Some estimates for commutators of Riesz transform associated with Schrodinger type operators

被引:10
作者
Liu, Yu [1 ]
Zhang, Jing [1 ]
Sheng, Jie-Lai [1 ]
Wang, Li-Juan [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, 30 Xueyuan Rd, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
commutator; Hardy space; reverse Holder inequality; Riesz transform; Schrodinger operator; Schrodinger type operator; HARDY-SPACES;
D O I
10.1007/s10587-016-0248-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L (1) = -Delta + V be a Schr:dinger operator and let L (2) = (-Delta)(2) + V (2) be a Schrodinger type operator on a"e (n) (n a (c) 3/4 5), where V not equal 0 is a nonnegative potential belonging to certain reverse Holder class B (s) for s a (c) 3/4 n/2. The Hardy type space is defined in terms of the maximal function with respect to the semigroup and it is identical to the Hardy space established by DziubaA"ski and Zienkiewicz. In this article, we prove the L (p) -boundedness of the commutator R (b) = bRf - R(bf) generated by the Riesz transform , where , which is larger than the space BMO(a"e (n) ). Moreover, we prove that R (b) is bounded from the Hardy space into weak .
引用
收藏
页码:169 / 191
页数:23
相关论文
共 19 条
[1]   Commutators of Riesz Transforms Related to Schrodinger Operators [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) :115-134
[2]  
Bramanti M, 1996, B UNIONE MAT ITAL, V10B, P843
[3]  
Cao J, 2010, HOUSTON J MATH, V36, P1067
[4]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[5]   Commutators of BMO functions and singular integral operators with non-smooth kernels [J].
Duong, XT ;
Yan, LX .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) :187-200
[6]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279
[7]   Lp boundedness of commutators of Riesz transforms associated to Schrodinger operator [J].
Guo, Zihua ;
Li, Pengtao ;
Peng, Lizhong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :421-432
[8]   MEAN OSCILLATION AND COMMUTATORS OF SINGULAR INTEGRAL-OPERATORS [J].
JANSON, S .
ARKIV FOR MATEMATIK, 1978, 16 (02) :263-270
[9]   Lp estimates for Schrodinger operators on nilpotent groups [J].
Li, HQ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 161 (01) :152-218
[10]   ENDPOINT ESTIMATES FOR COMMUTATORS OF RIESZ TRANSFORMS ASSOCIATED WITH SCHRODINGER OPERATORS [J].
Li, Pengtao ;
Peng, Lizhong .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 82 (03) :367-389