scanning electron microscopy;
immunogold label;
nanostructure;
D O I:
10.1016/j.yexmp.2007.01.003
中图分类号:
R36 [病理学];
学科分类号:
100104 ;
摘要:
Control of cell responses to artificial surfaces is a research goal for much of the biomaterials community. The role that the micron scale topography of a surface can play in controlling cell responses has been well documented and recent advances in nanofabrication techniques have lead to an interest in cells' responses to submicron-scale surface features. The study described here compares the relative influences that nanoscale and micron-scale features exert on cells by examining cytoskeletal organisation. Micron-scale structures were generated on the polyamide Kapton (R) using a 193 nm ArF Excimer laser, at 400 mJ/cm(2) fluence. Nanoscale features were generated on Kapton using the excimer laser with a phase mask. Osteoblasts were seeded onto surfaces for 24 h, then the cell membranes were detergent-extracted, and the cells were applied with a primary antibody to actin and a colloidal gold-conjugated secondary antibody. Samples to be examined using the confocal were mounted in glycerol, those for electron microscopy were carbon-coated. The organisation of actin was examined on micron- and nano-scale structures by scoring sections for order of branching and angles of branching to relate changes in the cytoskeleton relative to the control. Although there was a strong influence of micron-scale structures, the cytoskeleton of cells on the nanoscale structures were similar to the controls. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 134
页数:5
相关论文
共 38 条
[1]
Anselme K, 2000, J BIOMED MATER RES, V49, P155, DOI 10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.3.CO