Gallai and l-uniform Ramsey numbers of complete bipartite graphs

被引:1
作者
Liu, Yuchen [1 ]
Chen, Yaojun [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
关键词
Gallai coloring; Gallai Ramsey number; Uniform coloring; l-uniform Ramsey number; Complete bipartite graph;
D O I
10.1016/j.dam.2021.05.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gallai coloring of a complete graph is a coloring of the edges without rainbow triangles (all edges colored differently). Given a graph H and a positive integer k, the Gallai Ramsey number GR(k)(H) is the minimum integer N such that every Gallai k-coloring of K-N contains a monochromatic copy of H. A uniform coloring of a complete multipartite graph is a coloring of the edges such that the edges between any two parts receive the same color. Given a graph H and positive integers k and l, the l-uniform Ramsey number R-k(l) (H) is the minimum integer N such that any uniform k-coloring of any complete multipartite graph on N vertices with each part of cardinality no more than l, contains a monochromatic copy of H. Let K-m,K- n denote a complete bipartite graph. Wu et al. conjectured that GR(k)(K-m,K-n) = (n - 1)(k - 2)+ R-2(1)(K-m,K-n) if R-2(1) (K-m,K-n) >= 3m - 2, where k >= 3 and m >= n >= 2. In this paper, we show that GR(k)(K-m,K-n) = (n - 1)(k - 2) + R-2(m-1) (K-m,K-n) for all integers k >= 3 and m >= n >= 2. Based on this result, we improve the known general bounds for GR(k)(K-m,K-n), and confirm the conjecture for some complete bipartite graphs. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 23 条
  • [1] Cameron K., 1986, Periodica Mathematica Hungarica, V17, P173, DOI 10.1007/BF01848646
  • [2] Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Chen, Ming
    Li, Yusheng
    Pei, Chaoping
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1185 - 1196
  • [3] EDGE-COLORED COMPLETE GRAPHS WITH PRECISELY COLORED SUBGRAPHS
    CHUNG, FRK
    GRAHAM, RL
    [J]. COMBINATORICA, 1983, 3 (3-4) : 315 - 324
  • [4] Conlon D., 2015, Surveys in combinatorics, V424, P49
  • [5] EXOO G, 1991, SIAM PROC S, P207
  • [6] The Erdos-Hajnal conjecture for rainbow triangles
    Fox, Jacob
    Grinshpun, Andrey
    Pach, Janos
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 111 : 75 - 125
  • [7] Fujita S., THEORY APPL GRAPHS, DOI DOI 10.20429/TAG2014.000101
  • [8] Rainbow Generalizations of Ramsey Theory: A Survey
    Fujita, Shinya
    Magnant, Colton
    Ozeki, Kenta
    [J]. GRAPHS AND COMBINATORICS, 2010, 26 (01) : 1 - 30
  • [9] TRANSITIV ORIENTIERBARE GRAPHEN
    GALLAI, T
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 25 - &
  • [10] Edge colorings of complete graphs without tricolored triangles
    Gyárfás, A
    Simonyi, G
    [J]. JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 211 - 216