Multi-channel convolutional neural network architectures for thyroid cancer detection

被引:18
|
作者
Zhang, Xinyu [1 ]
Lee, Vincent C. S. [1 ]
Rong, Jia [1 ]
Liu, Feng [3 ]
Kong, Haoyu [2 ]
机构
[1] Monash Univ, Dept Data Sci & AI, Fac IT, Melbourne, Vic, Australia
[2] Monash Univ, Dept Human Ctr Comp, Fac IT, Melbourne, Vic, Australia
[3] Sichuan Univ, West China Hosp, Chengdu, Sichuan, Peoples R China
来源
PLOS ONE | 2022年 / 17卷 / 01期
关键词
LYMPH-NODE METASTASIS; COMPUTED-TOMOGRAPHY; ULTRASOUND; CLASSIFICATION; SEGMENTATION; DIAGNOSIS; IMAGES; FUSION;
D O I
10.1371/journal.pone.0262128
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Early detection of malignant thyroid nodules leading to patient-specific treatments can reduce morbidity and mortality rates. Currently, thyroid specialists use medical images to diagnose then follow the treatment protocols, which have limitations due to unreliable human false-positive diagnostic rates. With the emergence of deep learning, advances in computer-aided diagnosis techniques have yielded promising earlier detection and prediction accuracy; however, clinicians' adoption is far lacking. The present study adopts Xception neural network as the base structure and designs a practical framework, which comprises three adaptable multi-channel architectures that were positively evaluated using real-world data sets. The proposed architectures outperform existing statistical and machine learning techniques and reached a diagnostic accuracy rate of 0.989 with ultrasound images and 0.975 with computed tomography scans through the single input dual-channel architecture. Moreover, the patient-specific design was implemented for thyroid cancer detection and has obtained an accuracy of 0.95 for double inputs dual-channel architecture and 0.94 for four-channel architecture. Our evaluation suggests that ultrasound images and computed tomography (CT) scans yield comparable diagnostic results through computer-aided diagnosis applications. With ultrasound images obtained slightly higher results, CT, on the other hand, can achieve the patient-specific diagnostic design. Besides, with the proposed framework, clinicians can select the best fitting architecture when making decisions regarding a thyroid cancer diagnosis. The proposed framework also incorporates interpretable results as evidence, which potentially improves clinicians' trust and hence their adoption of the computer-aided diagnosis techniques proposed with increased efficiency and accuracy.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Multi-channel Convolutional Neural Network Ensemble for Pedestrian Detection
    Ribeiro, David
    Carneiro, Gustavo
    Nascimento, Jacinto C.
    Bernardino, Alexandre
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 122 - 130
  • [2] A multi-channel deep convolutional neural network for multi-classifying thyroid diseases
    Zhang, Xinyu
    Lee, Vincent C. S.
    Rong, Jia
    Lee, James C.
    Song, Jiangning
    Liu, Feng
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [3] FACIAL LANDMARK DETECTION VIA CASCADE MULTI-CHANNEL CONVOLUTIONAL NEURAL NETWORK
    Hou, Qiqi
    Wang, Jinjun
    Cheng, Lele
    Gong, Yihong
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1800 - 1804
  • [4] Epileptic Seizure Detection for Multi-channel EEG with Deep Convolutional Neural Network
    Park, Chulkyun
    Choi, Gwangho
    Kim, Junkyung
    Kim, Sangdeok
    Kim, Tae-Loon
    Min, Kyeongyuk
    Jung, Ki-Young
    Chong, Jongwha
    2018 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2018, : 518 - 522
  • [5] Biometric Face Presentation Attack Detection With Multi-Channel Convolutional Neural Network
    George, Anjith
    Mostaani, Zohreh
    Geissenbuhler, David
    Nikisins, Olegs
    Anjos, Andre
    Marcel, Sebastien
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 (01) : 42 - 55
  • [6] Automatic Detection of Photovoltaic Module Cells using Multi-Channel Convolutional Neural Network
    Zhou Ying
    Mao Li
    Wang Tong
    Chen Haiyong
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3571 - 3576
  • [7] Fire Recognition Based On Multi-Channel Convolutional Neural Network
    Mao, Wentao
    Wang, Wenpeng
    Dou, Zhi
    Li, Yuan
    FIRE TECHNOLOGY, 2018, 54 (02) : 531 - 554
  • [8] Multi-channel Convolutional Neural Network for Precise Meme Classification
    Sherratt, Victoria
    Pimbblet, Kevin
    Dethlefs, Nina
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 190 - 198
  • [9] Fire Recognition Based On Multi-Channel Convolutional Neural Network
    Wentao Mao
    Wenpeng Wang
    Zhi Dou
    Yuan Li
    Fire Technology, 2018, 54 : 531 - 554
  • [10] Multi-channel coronal hole detection with convolutional neural networks
    Jarolim, R.
    Veronig, A. M.
    Hofmeister, S.
    Heinemann, S. G.
    Temmer, M.
    Podladchikova, T.
    Dissauer, K.
    ASTRONOMY & ASTROPHYSICS, 2021, 652