On the geometric-arithmetic index by decompositions-CMMSE

被引:12
作者
Hernandez, Juan C. [1 ]
Rodriguez, Jose M. [2 ]
Sigarreta, Jose M. [1 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos Adame 54 Col Garita, Acalpulco Gro 39650, Mexico
[2] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
关键词
Graph invariant; Topological index; Geometric-arithmetic index; GRAPHS; PARAMETERS;
D O I
10.1007/s10910-016-0681-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The concept of geometric-arithmetic index was introduced in the chemical graph theory recently, but it has shown to be useful. There are many papers studying different kinds of indices (as Wiener, hyper-Wiener, detour, hyper-detour, Szeged, edge-Szeged, PI, vertex-PI and eccentric connectivity indices) under particular cases of decompositions. The main aim of this paper is to show that the computation of the geometric-arithmetic index of a graph G is essentially reduced to the computation of the geometric-arithmetic indices of the so-called primary subgraphs obtained by a general decomposition of G. Furthermore, using these results, we obtain formulas for the geometric-arithmetic indices of bridge graphs and other classes of graphs, like bouquet of graphs and circle graphs. These results are applied to the computation of the geometric-arithmetic index of Spiro chain of hexagons, polyphenylenes and polyethene.
引用
收藏
页码:1376 / 1391
页数:16
相关论文
共 25 条
  • [1] Wiener index of graphs with more than one cut-vertex
    Balakrishnan, R.
    Sridharan, N.
    Iyer, K. Viswanathan
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (09) : 922 - 927
  • [2] Gromov hyperbolic graphs
    Bermudo, Sergio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Vilaire, Jean-Marie
    [J]. DISCRETE MATHEMATICS, 2013, 313 (15) : 1575 - 1585
  • [3] Brinkmann G., 2001, Annals of Combinatorics, V5, P61, DOI [DOI 10.1007/S00026, 10.1007/s00026-001-8007-7, DOI 10.1007/S00026-001-8007-7]
  • [4] On the first geometric-arithmetic index of graphs
    Das, Kinkar Ch.
    Gutman, I.
    Furtula, B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) : 2030 - 2037
  • [5] Das KC, 2011, MATCH-COMMUN MATH CO, V65, P595
  • [6] Deutsch E, 2013, MATCH-COMMUN MATH CO, V70, P627
  • [7] Gutman I., 2008, Recent Results in the Theory of Randic Index
  • [8] Li X., 2006, Mathematical Chemistry Monographs
  • [9] Mansour T., 2009, J MATH CHEM, V581, P59, DOI DOI 10.1007/S10910-009-9531-7
  • [10] Mansour T, 2009, MATCH-COMMUN MATH CO, V61, P723