Descent obstruction and Brauer-Manin etale obstruction

被引:13
作者
Demarche, Cyril [1 ]
机构
[1] Univ Paris 11, Lab Math Orsay, F-91405 Orsay, France
关键词
RATIONAL-POINTS; COHOMOLOGY;
D O I
10.2140/ant.2009.3.237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a smooth, projective and geometrically integral variety over a number field. We consider two obstructions to the Hasse principle on X V the Brauer-Manin obstruction applied to etale covers of X and the descent obstruction on X. We prove that the first one is at least as strong as the second. Combining this with a recent example of Poonen shows that the descent obstruction is not sufficient to explain all counterexamples to the Hasse principle.
引用
收藏
页码:237 / 254
页数:18
相关论文
共 13 条
[1]   ABELIANIZATION OF THE 2ND NONABELIAN GALOIS COHOMOLOGY [J].
BOROVOI, MV .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) :217-239
[2]   DESCENT FOR RATIONAL VARITIES .2. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :375-492
[3]  
de Jong A.J., 2005, A result of gabber
[4]   Grothendieck's theorem on non-abelian H2 and local-global principles [J].
Flicker, YZ ;
Scheiderer, C ;
Sujatha, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :731-750
[5]  
Harari D, 2005, INT MATH RES NOTICES, V2005, P3203
[6]  
Harari D, 2002, MATH ANN, V322, P811, DOI 10.1007/s002080100289
[7]   Non-abelian cohomology and rational points [J].
Harari, D ;
Skorobogatov, AN .
COMPOSITIO MATHEMATICA, 2002, 130 (03) :241-273
[8]  
POONEN B, 2008, INSUFFICENCY BRAUER
[9]  
Serre J.P., 1973, LECT NOTES MATH, V5
[10]  
SKOROBOGATOV A, 2008, DESCENT OBSTRUCTION