Genome-wide identification and expression pattern analysis of lipoxygenase gene family in banana

被引:37
|
作者
Liu, Fan [1 ,2 ]
Li, Hua [1 ]
Wu, Junwei [1 ,2 ]
Wang, Bin [1 ,2 ]
Tian, Na [1 ,2 ]
Liu, Jiapeng [1 ,2 ]
Sun, Xueli [3 ]
Wu, Huan [1 ,2 ]
Huang, Yuji [1 ]
Lu, Peitao [1 ]
Cheng, Chunzhen [1 ,2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Hort, Fuzhou 350002, Peoples R China
[2] Shanxi Agr Univ, Coll Hort, Taigu 030801, Peoples R China
[3] South China Agr Univ, Coll Life Sci, Guangzhou 510000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ABIOTIC STRESS; LOX GENES; VOLATILES PRODUCTION; FRUIT-DEVELOPMENT; HIGH-TEMPERATURE; ARABIDOPSIS; 13-LIPOXYGENASES; EVOLUTION; RESPONSES; JASMONATE;
D O I
10.1038/s41598-021-89211-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the Musa acuminata, M. balbisiana and M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of MbLOXs. Transcriptome data based gene expression analysis showed that MaLOX1, 4, and 7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7 MaLOXs were found to be low temperature-, high temperature-, and Fusarium oxysporum f. sp. Cubense tropical race 4 (FocTR4)-responsive, respectively. MaLOX8, 9 and 13 are responsive to all the three stresses, MaLOX4 and MaLOX12 are high temperature- and FocTR4-responsive; MaLOX6 and MaLOX17 are significantly induced by low temperature and FocTR4; and the expression of MaLOX7 and MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several MaLOXs are regulated by MeJA and FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of MaLOXs revealed 3 models respectively for 5 (MaLOX7-11), 3 (MaLOX6, 13, and 17), and 1 (MaLOX12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of LOXs in banana growth and development and adaptations to different stresses.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato
    Peiwen He
    Jingzhen Zhang
    Zunfu Lv
    Peng Cui
    Ximing Xu
    Melvin Sidikie George
    Guoquan Lu
    BMC Plant Biology, 23
  • [42] Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat
    Yang, Yanlin
    Xu, Tian
    Wang, Honggang
    Feng, Deshun
    MOLECULAR BIOLOGY REPORTS, 2021, 48 (02) : 1269 - 1279
  • [43] Genome-Wide Identification and Expression Analysis of SWEET Gene Family in Strawberry
    Tian, Riru
    Xu, Jiayi
    Xu, Zichun
    Li, Jianuo
    Li, He
    HORTICULTURAE, 2024, 10 (02)
  • [44] Genome-wide identification and expression analysis of the expansin gene family in tomato
    Lu, Yongen
    Liu, Lifeng
    Wang, Xin
    Han, Zhihui
    Ouyang, Bo
    Zhang, Junhong
    Li, Hanxia
    MOLECULAR GENETICS AND GENOMICS, 2016, 291 (02) : 597 - 608
  • [45] Genome-wide identification and gene expression pattern analysis of the carotenoid cleavage oxygenase gene family in Fagopyrum tataricum
    Huan Li
    Xin Yao
    Ailing He
    Guoxing Xue
    Haizhu Yang
    Yu Fan
    Sanwei Yang
    Jingjun Ruan
    BMC Plant Biology, 25 (1)
  • [46] GENOME-WIDE IDENTIFICATION AND EXPRESSION PATTERN ANALYSIS OF DHN FAMILY GENES IN MAIZE
    Gao, Chunyan
    Cao, Xiaohan
    Shen, Jiawei
    Wang, Xv
    Jiao, Xinyue
    Gong, Yanting
    Peng, Xinyue
    Ren, Liping
    PAKISTAN JOURNAL OF BOTANY, 2024, 56 (06) : 2373 - 2380
  • [47] Genome-wide identification, expression pattern and subcellular localization analysis of the JAZ gene family in Toona ciliata
    Song, Huiyun
    Duan, Zhihao
    Wang, Zhi
    Li, Yue
    Wang, Yueyang
    Li, Chunmei
    Mao, Wenmai
    Que, Qingmin
    Chen, Xiaoyang
    Li, Pei
    INDUSTRIAL CROPS AND PRODUCTS, 2022, 178
  • [48] Genome-wide identification and analysis of the evolution and expression pattern of the SBP gene family in two Chimonanthus species
    Ge-Ge Jiang
    Qian-Qian Wan
    Wei Zou
    Gui-Ting Hu
    Li-Yuan Yang
    Li Zhu
    Hui-Juan Ning
    Molecular Biology Reports, 2023, 50 : 9107 - 9119
  • [49] Genome-wide identification and tissue expression pattern analysis of TPS gene family in soybean (Glycine max)
    Li, Huanli
    Zhang, Xiaoling
    Yang, Qinli
    Shangguan, Xiaoxia
    Ma, Yanbin
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [50] Genome-wide identification and expression pattern analysis of the ACS gene family during fruit development in peach
    Wang, Xiaofei
    Dong, Kang
    Cheng, Jun
    Tan, Bin
    Zheng, Xianbo
    Ye, Xia
    Wang, Wei
    Zhang, Langlang
    Feng, Jiancan
    FRUIT RESEARCH, 2024, 4