Genome-wide identification and expression pattern analysis of lipoxygenase gene family in banana

被引:37
|
作者
Liu, Fan [1 ,2 ]
Li, Hua [1 ]
Wu, Junwei [1 ,2 ]
Wang, Bin [1 ,2 ]
Tian, Na [1 ,2 ]
Liu, Jiapeng [1 ,2 ]
Sun, Xueli [3 ]
Wu, Huan [1 ,2 ]
Huang, Yuji [1 ]
Lu, Peitao [1 ]
Cheng, Chunzhen [1 ,2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Hort, Fuzhou 350002, Peoples R China
[2] Shanxi Agr Univ, Coll Hort, Taigu 030801, Peoples R China
[3] South China Agr Univ, Coll Life Sci, Guangzhou 510000, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
ABIOTIC STRESS; LOX GENES; VOLATILES PRODUCTION; FRUIT-DEVELOPMENT; HIGH-TEMPERATURE; ARABIDOPSIS; 13-LIPOXYGENASES; EVOLUTION; RESPONSES; JASMONATE;
D O I
10.1038/s41598-021-89211-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the Musa acuminata, M. balbisiana and M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of MbLOXs. Transcriptome data based gene expression analysis showed that MaLOX1, 4, and 7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7 MaLOXs were found to be low temperature-, high temperature-, and Fusarium oxysporum f. sp. Cubense tropical race 4 (FocTR4)-responsive, respectively. MaLOX8, 9 and 13 are responsive to all the three stresses, MaLOX4 and MaLOX12 are high temperature- and FocTR4-responsive; MaLOX6 and MaLOX17 are significantly induced by low temperature and FocTR4; and the expression of MaLOX7 and MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several MaLOXs are regulated by MeJA and FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of MaLOXs revealed 3 models respectively for 5 (MaLOX7-11), 3 (MaLOX6, 13, and 17), and 1 (MaLOX12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of LOXs in banana growth and development and adaptations to different stresses.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Genome-wide identification, evolution and expression pattern analysis of the GATA gene family in Sorghum bicolor
    Yao, Xin
    Lai, Dili
    Zhou, Meiliang
    Ruan, Jingjun
    Ma, Chao
    Wu, Weijiao
    Weng, Wenfeng
    Fan, Yu
    Cheng, Jianping
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [22] Genome-wide identification of YABBY gene family and its expression pattern analysis in Astragalus mongholicus
    Wang, Jiamei
    Wang, Zhen
    Wang, Panpan
    Wu, Jianhao
    Kong, Lingyang
    Ma, Lengleng
    Jiang, Shan
    Ren, Weichao
    Liu, Weili
    Guo, Yanli
    Ma, Wei
    Liu, Xiubo
    PLANT SIGNALING & BEHAVIOR, 2024, 19 (01)
  • [23] Genome-Wide Identification and Expression Pattern Analysis of Polyphenol Oxidase Gene Family in Agaricus bisporus
    Chen, Yanan
    Mao, Jingxiu
    Zhang, Lanlan
    Zhu, Changjun
    Qin, Qiaoping
    Li, Nanyi
    AGRONOMY-BASEL, 2023, 13 (10):
  • [24] Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice
    Umate, Pavan
    PLANT SIGNALING & BEHAVIOR, 2011, 6 (03) : 335 - 338
  • [25] Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Lipoxygenase Gene Family in Maize (Zea mays)
    Li, Sinan
    Hou, Shuai
    Sun, Yuanqing
    Sun, Minghao
    Sun, Yan
    Li, Xin
    Li, Yunlong
    Wang, Luyao
    Cai, Quan
    Guo, Baitao
    Zhang, Jianguo
    GENES, 2025, 16 (01)
  • [26] GENOME-WIDE IDENTIFICATION AND EXPRESSION ANALYSIS OF AAO GENE FAMILY IN MAIZE
    Wu, De-Gong
    Wang, Yong
    Huang, Shou-Cheng
    Zhan, Qiu-Wen
    Yu, Hai-Bing
    Hunag, Bao-Hong
    Cheng, Xin-Xin
    Li, Wen-Yang
    Du, Jun-Li
    PAKISTAN JOURNAL OF BOTANY, 2021, 53 (01) : 181 - 190
  • [27] Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat
    Yanlin Yang
    Tian Xu
    Honggang Wang
    Deshun Feng
    Molecular Biology Reports, 2021, 48 : 1269 - 1279
  • [28] Genome-wide identification and expression analysis of the expansin gene family in tomato
    Yongen Lu
    Lifeng Liu
    Xin Wang
    Zhihui Han
    Bo Ouyang
    Junhong Zhang
    Hanxia Li
    Molecular Genetics and Genomics, 2016, 291 : 597 - 608
  • [29] Genome-Wide Identification of the MPK Gene Family and Expression Analysis under Low-Temperature Stress in the Banana
    Fan, Zhengyang
    Zhao, Bianbian
    Lai, Ruilian
    Wu, Huan
    Jia, Liang
    Zhao, Xiaobing
    Luo, Jie
    Huang, Yuji
    Chen, Yukun
    Lin, Yuling
    Lai, Zhongxiong
    PLANTS-BASEL, 2023, 12 (16):
  • [30] Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava
    Wei, Yunxie
    Shi, Haitao
    Xia, Zhiqiang
    Tie, Weiwei
    Ding, Zehong
    Yan, Yan
    Wang, Wenquan
    Hu, Wei
    Li, Kaimian
    FRONTIERS IN PLANT SCIENCE, 2016, 7