Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design

被引:42
作者
Cai, Jianfeng [1 ,2 ]
Yang, Junxuan [1 ,2 ]
Liu, Guoqiang [1 ,3 ]
Wang, Hongxiang [1 ,3 ]
Shi, Fanfan [1 ]
Tan, Xiaojian [1 ,3 ]
Ge, Zhenhua [2 ]
Jiang, Jun [1 ,3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectrical; High-entropy; CuInTe2; Thermal conductivity; Electronic band structure; HIGH THERMOELECTRIC PERFORMANCE; ALLOYS;
D O I
10.1016/j.mtphys.2021.100394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Entropy engineering has been widely applied to thermoelectrics as an effective strategy to reduce thermal conductivity. On the other hand,the increase of configuration entropy certainly decreases the electrical conductivity simultaneously, leading to the worsening of the thermoelectric performance. In this paper, we report a study on the high entropy structure design for chalcogenide CuInTe2. Based on the analysis of electronic band structure, we show how to optimize the constituents of high-entropy compound to relieve the influence on electrical conductivity. Compared with (CuAg)(0.5)(ZnGeGaIn)(0.25)Te-2, which has the highest configuration entropy among our samples, the optimized constituents of Cu0.8Ag0.2(ZnGe)(0.1)(GaIn)(0.4)Te-2 shows the one order higher carrier mobility and little bit higher thermal conductivity. Finally, the highest ZT of 1.02 at 820 K is obtained in Cu0.8Ag0.2(ZnGe)(0.1)(GaIn)(0.4)Te-2, accompanying with a very low thermal conductivity of 0.5 Wm(-1)K(-1). This work provides a successful example of the high-entropy structure design for thermoelectrics, and it indicates that to reconcile the different requirements of thermal conductivity and electrical conductivity is crucial. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 42 条
[21]   High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6 [J].
Luo, Yubo ;
Cai, Songting ;
Hao, Shiqiang ;
Pielnhofer, Florian ;
Hadar, Ido ;
Luo, Zhong-Zhen ;
Xu, Jianwei ;
Wolverton, Chris ;
Dravid, Vinayak P. ;
Pfitzner, Arno ;
Yan, Qingyu ;
Kanatzidis, Mercouri G. .
JOULE, 2020, 4 (01) :159-175
[22]   α-CsCu5Se3: Discovery of a Low-Cost Bulk Selenide with High Thermoelectric Performance [J].
Ma, Ni ;
Li, Yan-Yan ;
Chen, Ling ;
Wu, Li-Ming .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (11) :5293-5303
[23]   High-entropy alloys: a critical assessment of their founding principles and future prospects [J].
Pickering, E. J. ;
Jones, N. G. .
INTERNATIONAL MATERIALS REVIEWS, 2016, 61 (03) :183-202
[24]   Chalcopyrite CuGaTe2: A High-Efficiency Bulk Thermoelectric Material [J].
Plirdpring, Theerayuth ;
Kurosaki, Ken ;
Kosuga, Atsuko ;
Day, Tristan ;
Firdosy, Samad ;
Ravi, Vilupanur ;
Snyder, G. Jeffrey ;
Harnwunggmoung, Adul ;
Sugahara, Tohru ;
Ohishi, Yuji ;
Muta, Hiroaki ;
Yamanaka, Shinsuke .
ADVANCED MATERIALS, 2012, 24 (27) :3622-3626
[25]   Cu-based thermoelectric materials [J].
Qiu, Pengfei ;
Shi, Xun ;
Chen, Lidong .
ENERGY STORAGE MATERIALS, 2016, 3 :85-97
[26]   Generating Light from Darkness [J].
Raman, Aaswath P. ;
Li, Wei ;
Fan, Shanhui .
JOULE, 2019, 3 (11) :2679-2686
[27]   High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering [J].
Raphel, Arun ;
Vivekanandhan, P. ;
Kumaran, S. .
MATERIALS LETTERS, 2020, 269
[28]   Large valley degeneracy and high thermoelectric performance in p-type Ba8Cu6Ge40-based clathrates [J].
Sato, H. K. ;
Tamaki, H. ;
Kanno, T. .
APPLIED PHYSICS LETTERS, 2020, 116 (25)
[29]   High-entropy alloys as high-temperature thermoelectric materials [J].
Shafeie, Samrand ;
Guo, Sheng ;
Hu, Qiang ;
Fahlquist, Henrik ;
Erhart, Paul ;
Palmqvist, Anders .
JOURNAL OF APPLIED PHYSICS, 2015, 118 (18)
[30]   Enhanced Thermoelectric Properties of p-Type Bi0.48Sb1.52Te3/Sb2Te3 Composite [J].
Shi, Fanfan ;
Tan, Chang ;
Wang, Hongxiang ;
Tan, Xiaojian ;
Yin, Yinong ;
Yu, Bo ;
Cai, Jianfeng ;
Xiong, Chenglong ;
Liu, Guoqiang ;
Jiang, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (47) :52922-52928