Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design

被引:42
作者
Cai, Jianfeng [1 ,2 ]
Yang, Junxuan [1 ,2 ]
Liu, Guoqiang [1 ,3 ]
Wang, Hongxiang [1 ,3 ]
Shi, Fanfan [1 ]
Tan, Xiaojian [1 ,3 ]
Ge, Zhenhua [2 ]
Jiang, Jun [1 ,3 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Yunnan, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectrical; High-entropy; CuInTe2; Thermal conductivity; Electronic band structure; HIGH THERMOELECTRIC PERFORMANCE; ALLOYS;
D O I
10.1016/j.mtphys.2021.100394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Entropy engineering has been widely applied to thermoelectrics as an effective strategy to reduce thermal conductivity. On the other hand,the increase of configuration entropy certainly decreases the electrical conductivity simultaneously, leading to the worsening of the thermoelectric performance. In this paper, we report a study on the high entropy structure design for chalcogenide CuInTe2. Based on the analysis of electronic band structure, we show how to optimize the constituents of high-entropy compound to relieve the influence on electrical conductivity. Compared with (CuAg)(0.5)(ZnGeGaIn)(0.25)Te-2, which has the highest configuration entropy among our samples, the optimized constituents of Cu0.8Ag0.2(ZnGe)(0.1)(GaIn)(0.4)Te-2 shows the one order higher carrier mobility and little bit higher thermal conductivity. Finally, the highest ZT of 1.02 at 820 K is obtained in Cu0.8Ag0.2(ZnGe)(0.1)(GaIn)(0.4)Te-2, accompanying with a very low thermal conductivity of 0.5 Wm(-1)K(-1). This work provides a successful example of the high-entropy structure design for thermoelectrics, and it indicates that to reconcile the different requirements of thermal conductivity and electrical conductivity is crucial. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 42 条
[1]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[2]   High-performance bulk thermoelectrics with all-scale hierarchical architectures [J].
Biswas, Kanishka ;
He, Jiaqing ;
Blum, Ivan D. ;
Wu, Chun-I ;
Hogan, Timothy P. ;
Seidman, David N. ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
NATURE, 2012, 489 (7416) :414-418
[3]   Ultralow Thermal Conductivity and Thermoelectric Properties of Rb2Bi8Se13 [J].
Cai, Songting ;
Hao, Shiqiang ;
Luo, Yubo ;
Su, Xianli ;
Luo, Zhong-Zhen ;
Hu, Xiaobing ;
Wolverton, Christopher ;
Dravid, Vinayak P. ;
Kanatzidis, Mercouri G. .
CHEMISTRY OF MATERIALS, 2020, 32 (08) :3561-3569
[4]   Thermoelectric properties of n-type Cu4Sn7S16-based compounds [J].
Deng, Tingting ;
Wei, Tian-Ran ;
Song, Qingfeng ;
Xu, Qing ;
Ren, Dudi ;
Qiu, Pengfei ;
Shi, Xun ;
Chen, Lidong .
RSC ADVANCES, 2019, 9 (14) :7826-7832
[5]   Thermoelectric performance of PbSnTeSe high-entropy alloys [J].
Fan, Zhao ;
Wang, Hui ;
Wu, Yuan ;
Liu, Xiongjun ;
Lu, Zhaoping .
MATERIALS RESEARCH LETTERS, 2017, 5 (03) :187-194
[6]   Unveiling the Correlation between the Crystalline Structure of M-Filled CoSb3(M = Y, K, Sr) Skutterudites and Their Thermoelectric Transport Properties [J].
Gainza, Javier ;
Serrano-Sanchez, Federico ;
Rodrigues, Joao E. ;
Prado-Gonjal, Jesus ;
Nemes, Norbert M. ;
Biskup, Neven ;
Dura, Oscar J. ;
Martinez, Jose L. ;
Fauth, Francois ;
Alonso, Jose A. .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (36)
[7]   High-entropy functional materials [J].
Gao, Michael C. ;
Miracle, Daniel B. ;
Maurice, David ;
Yan, Xuehui ;
Zhang, Yong ;
Hawk, Jeffrey A. .
JOURNAL OF MATERIALS RESEARCH, 2018, 33 (19) :3138-3155
[8]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[9]   High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy [J].
Guo, Jun ;
Zhang, Yi-Xin ;
Wang, Zi-Yuan ;
Zheng, Fengshan ;
Ge, Zhen-Hua ;
Fu, Jiecai ;
Feng, Jing .
NANO ENERGY, 2020, 78
[10]   Suppressing the dynamic precipitation and lowering the thermal conductivity for stable and high thermoelectric performance in BaCu2Te2 based materials [J].
Guo, Kai ;
Lin, Jianwei ;
Li, Yang ;
Zhu, Yifan ;
Li, Xin ;
Yang, Xinxin ;
Xing, Juanjuan ;
Yang, Jiong ;
Luo, Jun ;
Zhao, Jing-Tai .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (10) :5323-5331