It's All in the PAN: Crosstalk, Plasticity, Redundancies, Switches, and Interconnectedness Encompassed by PANoptosis Underlying the Totality of Cell Death-Associated Biological Effects

被引:59
作者
Gullett, Jessica M. [1 ]
Tweedell, Rebecca E. [1 ]
Kanneganti, Thirumala-Devi [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Immunol, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
PANoptosis; PANoptosome; pyroptosis; apoptosis; necroptosis; inflammatory cell death; inflammasome; inflammation; innate immunity; infection; NLR; caspase; IRF1; ZBP1; RIPK1; RIPK3; MLKL; NLRP3; AIM2; Pyrin; caspase-1; ASC; caspase-8; caspase-3; caspase-7; crosstalk; plasticity; redundancy; NLRP3 INFLAMMASOME ACTIVATION; CYTOCHROME-C RELEASE; MIXED LINEAGE KINASE; GASDERMIN D; MOLECULAR-MECHANISMS; CASPASE; 8; MITOCHONDRIAL DAMAGE; MACROPHAGE APOPTOSIS; SALMONELLA INFECTION; PROGRAMMED NECROSIS;
D O I
10.3390/cells11091495
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The innate immune system provides the first line of defense against cellular perturbations. Innate immune activation elicits inflammatory programmed cell death in response to microbial infections or alterations in cellular homeostasis. Among the most well-characterized programmed cell death pathways are pyroptosis, apoptosis, and necroptosis. While these pathways have historically been defined as segregated and independent processes, mounting evidence shows significant crosstalk among them. These molecular interactions have been described as 'crosstalk', 'plasticity', 'redundancies', 'molecular switches', and more. Here, we discuss the key components of cell death pathways and note several examples of crosstalk. We then explain how the diverse descriptions of crosstalk throughout the literature can be interpreted through the lens of an integrated inflammatory cell death concept, PANoptosis. The totality of biological effects in PANoptosis cannot be individually accounted for by pyroptosis, apoptosis, or necroptosis alone. We also discuss PANoptosomes, which are multifaceted macromolecular complexes that regulate PANoptosis. We consider the evidence for PANoptosis, which has been mechanistically characterized during influenza A virus, herpes simplex virus 1, Francisella novicida, and Yersinia infections, as well as in response to altered cellular homeostasis, in inflammatory diseases, and in cancers. We further discuss the role of IRF1 as an upstream regulator of PANoptosis and conclude by reexamining historical studies which lend credence to the PANoptosis concept. Cell death has been shown to play a critical role in infections, inflammatory diseases, neurodegenerative diseases, cancers, and more; therefore, having a holistic understanding of cell death is important for identifying new therapeutic strategies.
引用
收藏
页数:20
相关论文
共 161 条
[51]   Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3 [J].
Kang, Seokwon ;
Fernandes-Alnemri, Teresa ;
Rogers, Corey ;
Mayes, Lindsey ;
Wang, Ying ;
Dillon, Christopher ;
Roback, Linda ;
Kaiser, William ;
Oberst, Andrew ;
Sagara, Junji ;
Fitzgerald, Katherine A. ;
Green, Douglas R. ;
Zhang, Jianke ;
Mocarski, Edward S. ;
Alnemri, Emad S. .
NATURE COMMUNICATIONS, 2015, 6
[52]   Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice [J].
Kang, Tae-Bong ;
Oh, Gi-Su ;
Scandella, Elke ;
Bolinger, Beatrice ;
Ludewig, Burkhard ;
Kovalenko, Andrew ;
Wallach, David .
JOURNAL OF IMMUNOLOGY, 2008, 181 (04) :2522-2532
[53]   Caspase-8 serves both apoptotic and nonapoptotic roles [J].
Kang, TB ;
Ben-Moshe, T ;
Varfolomeev, EE ;
Pewzner-Jung, Y ;
Yogev, N ;
Jurewicz, A ;
Waisman, A ;
Brenner, O ;
Haffner, R ;
Gustafsson, E ;
Ramakrishnan, P ;
Lapidot, T ;
Wallach, D .
JOURNAL OF IMMUNOLOGY, 2004, 173 (05) :2976-2984
[54]   Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3 [J].
Kanneganti, TD ;
Özören, N ;
Body-Malapel, M ;
Amer, A ;
Park, JH ;
Franchi, L ;
Whitfield, J ;
Barchet, W ;
Colonna, M ;
Vandenabeele, P ;
Bertin, J ;
Coyle, A ;
Grant, EP ;
Akira, S ;
Núñez, G .
NATURE, 2006, 440 (7081) :233-236
[55]  
Karki R., SHOCK SYNDROMES CELL, V2021
[56]   ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis [J].
Karki, Rajendra ;
Sundaram, Balamurugan ;
Sharma, Bhesh Raj ;
Lee, SangJoon ;
Malireddi, R. K. Subbarao ;
Lam Nhat Nguyen ;
Christgen, Shelbi ;
Zheng, Min ;
Wang, Yaqiu ;
Samir, Parimal ;
Neale, Geoffrey ;
Vogel, Peter ;
Kanneganti, Thirumala-Devi .
CELL REPORTS, 2021, 37 (03)
[57]   The 'cytokine storm': molecular mechanisms and therapeutic prospects [J].
Karki, Rajendra ;
Kanneganti, Thirumala-Devi .
TRENDS IN IMMUNOLOGY, 2021, 42 (08) :681-705
[58]   Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer [J].
Karki, Rajendra ;
Sharma, Bhesh Raj ;
Lee, Ein ;
Banoth, Balaji ;
Malireddi, R. K. Subbarao ;
Samir, Parimal ;
Tuladhar, Shraddha ;
Mummareddy, Harisankeerth ;
Burton, Amanda R. ;
Vogel, Peter ;
Kanneganti, Thirumala-Devi .
JCI INSIGHT, 2020, 5 (12)
[59]   IRF8 Regulates Transcription of Naips for NLRC4 Inflammasome Activation [J].
Karki, Rajendra ;
Lee, Ein ;
Place, David ;
Samir, Parimal ;
Mavuluri, Jayadev ;
Sharma, Bhesh Raj ;
Balakrishnan, Arjun ;
Malireddi, R. K. Subbarao ;
Geiger, Rechel ;
Zhu, Qifan ;
Neale, Geoffrey ;
Kanneganti, Thirumala-Devi .
CELL, 2018, 173 (04) :920-+
[60]   NINJ1 mediates plasma membrane rupture during lytic cell death [J].
Kayagaki, Nobuhiko ;
Kornfeld, Opher S. ;
Lee, Bettina L. ;
Stowe, Irma B. ;
O'Rourke, Karen ;
Li, Qingling ;
Sandoval, Wendy ;
Yan, Donghong ;
Kang, Jing ;
Xu, Min ;
Zhang, Juan ;
Lee, Wyne P. ;
McKenzie, Brent S. ;
Ulas, Gozde ;
Payandeh, Jian ;
Roose-Girma, Merone ;
Modrusan, Zora ;
Reja, Rohit ;
Sagolla, Meredith ;
Webster, Joshua D. ;
Cho, Vicky ;
Andrews, T. Daniel ;
Morris, Lucy X. ;
Miosge, Lisa A. ;
Goodnow, Christopher C. ;
Bertram, Edward M. ;
Dixit, Vishva M. .
NATURE, 2021, 591 (7848) :131-+