Lyapunov's second method for nonautonomous differential equations

被引:0
作者
Gruene, Lars
Kloeden, Peter E.
Siegmund, Stefan
Wirth, Fabian R.
机构
[1] Univ Bayreuth, Inst Math, D-95440 Bayreuth, Germany
[2] Univ Frankfurt, Inst Comp Orientierte Math, D-60054 Frankfurt, Germany
[3] Natl Univ Ireland Maynooth, Hamilton Inst, Maynooth, Kildare, Ireland
关键词
lyapunov function; Lyapunov's second method; nonautonomous dynamical system; nonautonomous differential equation; stability; nonautonomous attractor;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Converse Lyapunov theorems are presented for nonautonomous systems modelled as skew product flows. These characterize various types of stability of invariant sets and pullback, forward and uniform attractors in such nonautonomous systems.
引用
收藏
页码:375 / 403
页数:29
相关论文
共 31 条
[21]   Stability, instability, and bifurcation phenomena in non-autonomous differential equations [J].
Langa, JA ;
Robinson, JC ;
Suárez, A .
NONLINEARITY, 2002, 15 (03) :887-903
[22]   A smooth converse Lyapunov theorem for robust stability [J].
Lin, YD ;
Sontag, ED ;
Wang, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (01) :124-160
[23]  
Massera J.L., 1956, ANN MATH, V64, P182, DOI DOI 10.2307/1969955
[24]  
NADZIEJA T, 1990, CZECH MATH J, V40, P195
[25]  
Sell G.R, 1971, Topological Dynamics and Ordinary Differential Equations
[26]   Comments on integral variants of ISS [J].
Sontag, ED .
SYSTEMS & CONTROL LETTERS, 1998, 34 (1-2) :93-100
[27]   SMOOTH STABILIZATION IMPLIES COPRIME FACTORIZATION [J].
SONTAG, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :435-443
[28]  
Wiggins S., 2003, TEXTS APPL MATH, V2, DOI DOI 10.1007/B97481
[29]   SMOOTHING DERIVATIVES OF FUNCTIONS AND APPLICATIONS [J].
WILSON, FW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 139 (MAY) :413-&
[30]   A converse Lyapunov theorem for linear parameter-varying and linear switching systems [J].
Wirth, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (01) :210-239