REPRESENTATION LEARNING METHOD OF GRAPH CONVOLUTIONAL NETWORK BASED ON STRUCTURE ENHANCEMENT

被引:2
|
作者
Fu, Ningchen [1 ]
Zhao, Qin [1 ,2 ,3 ]
Miao, Yaru [1 ]
Zhang, Bo [1 ,2 ]
Wang, Dong [4 ]
机构
[1] Shanghai Normal Univ, Shanghai Engn Res Ctr Intelligent Educ & Bigdata, Shanghai 200234, Peoples R China
[2] Shanghai Normal Univ, Res Base Online Educ Shanghai Middle & Primary Sch, Shanghai 200234, Peoples R China
[3] Tongji Univ, Key Lab Embedded Syst & Serv Comp, Minist Educ, Shanghai 200092, Peoples R China
[4] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Network representation learning; graph convolutional network; deep learning;
D O I
10.31577/cai202261563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network representation learning has attracted widespread attention as a pre-processing process for some machine learning and deep learning tasks. How-ever, most existing methods only consider influence of nodes' low-order neighbors to represent them. Either nodes' high-order neighbor or the intrinsic characteris-tic attributes of nodes are ignored, leading to the effect of network representation learning that needs to be improved. This paper proposes a novel model named Structure Enhanced Graph Convolutional Network (SEGCN) to address these lim-itations. SEGCN consists of the following components, i.e., the network structure enhancement to transform weak relationship into strong relationship, the node fea-ture aggregation to fuse high-order neighbor information. Hence, the SEGCN model can simultaneously integrate network structure information, attribute information, and high-order neighbor relationships together. Experimental results for node clas-sification and node clustering on six datasets show that SEGCN achieves better effectiveness and efficiency than state-of-the-art baselines.
引用
收藏
页码:1563 / 1588
页数:26
相关论文
共 50 条
  • [41] Representation learning of graphs using graph convolutional multilayer networks based on motifs
    Li, Xing
    Wei, Wei
    Feng, Xiangnan
    Liu, Xue
    Zheng, Zhiming
    NEUROCOMPUTING, 2021, 464 : 218 - 226
  • [42] A malware propagation prediction model based on representation learning and graph convolutional networks
    Tun Li
    Yanbing Liu
    Qilie Liu
    Wei Xu
    Yunpeng Xiao
    Hong Liu
    Digital Communications and Networks, 2023, 9 (05) : 1090 - 1100
  • [43] Long-Tailed Graph Representation Learning via Dual Cost-Sensitive Graph Convolutional Network
    Duan, Yijun
    Liu, Xin
    Jatowt, Adam
    Yu, Hai-tao
    Lynden, Steven
    Kim, Kyoung-Sook
    Matono, Akiyoshi
    REMOTE SENSING, 2022, 14 (14)
  • [44] A malware propagation prediction model based on representation learning and graph convolutional networks
    Li, Tun
    Liu, Yanbing
    Liu, Qilie
    Xu, Wei
    Xiao, Yunpeng
    Liu, Hong
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (05) : 1090 - 1100
  • [45] Supervised contrastive learning for graph representation enhancement
    Ghayekhloo, Mohadeseh
    Nickabadi, Ahmad
    NEUROCOMPUTING, 2024, 588
  • [46] Multitask Representation Learning With Multiview Graph Convolutional Networks
    Huang, Hong
    Song, Yu
    Wu, Yao
    Shi, Jia
    Xie, Xia
    Jin, Hai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (03) : 983 - 995
  • [47] Learning multimodal word representation with graph convolutional networks
    Zhu, Wenhao
    Liu, Shuang
    Liu, Chaoming
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (06)
  • [48] Graph representation learning in biological network
    Roy, Swarup
    Guzzi, Pietro Hiram
    Kalita, Jugal
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [49] Learning graph structure via graph convolutional networks
    Zhang, Qi
    Chang, Jianlong
    Meng, Gaofeng
    Xu, Shibiao
    Xiang, Shiming
    Pan, Chunhong
    PATTERN RECOGNITION, 2019, 95 : 308 - 318
  • [50] Cellular Network Fault Diagnosis Method Based on a Graph Convolutional Neural Network
    Amuah, Ebenezer Ackah
    Wu, Mingxiao
    Zhu, Xiaorong
    SENSORS, 2023, 23 (16)