High Configuration Entropy Activated Lattice Oxygen for O2 Formation on Perovskite Electrocatalyst

被引:242
作者
Tang, Lina [1 ]
Yang, Yanling [1 ]
Guo, Hongquan [1 ]
Wang, Yue [1 ]
Wang, Mengjie [1 ]
Liu, Zuoqing [2 ]
Yang, Guangming [2 ]
Fu, Xianzhu [3 ]
Luo, Yang [4 ]
Jiang, Chenxing [1 ]
Zhao, Yingru [1 ]
Shao, Zongping [2 ]
Sun, Yifei [1 ,5 ,6 ]
机构
[1] Xiamen Univ, Coll Energy, Xiamen 361102, Peoples R China
[2] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Chem Engn, Nanjing 210009, Peoples R China
[3] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
[4] Minist Nat Resources, Inst Oceanog 3, Xiamen 361005, Peoples R China
[5] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[6] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
density functional theory; high entropy; lattice oxygen mechanism; oxygen evolution; perovskite oxide; EVOLUTION REACTION; REDUCTION REACTION; OXIDE; SURFACE; LACOO3;
D O I
10.1002/adfm.202112157
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The single-phase oxides with elemental complexity and compositional diversity, usually named high entropy oxides, feature homogeneously dispersed multi-metallic elements in equiatomic concentration. The unusual properties of high entropy oxides endow their potential application in clean-energy-related electrocatalysis. However, the possible fundamental relationship between configuration entropy and the underlying catalytic mechanism is still not well understood and established. Herein, a high entropy perovskite cobaltate consisting of five equimolar metals in the B-site (Mg, Mn, Fe, Co, and Ni) is employed as an electrocatalyst for oxygen evolution reaction (OER). The configuration entropy serves as an effective tool to promote the intrinsic activity of the Co reactive site and manipulate the OER mechanism. The high entropy cobaltate demonstrates a lower overpotential of 320 mV at a current density of 10 mA cm(-2), outperforming other counterparts. The X-ray spectroscopies disclose the synergistic charge-exchange effect among different cations and the formation of a new oxygen hole state. Combinatorially computational and experimental results unveil the enigma that the high configuration entropy leads to the random occupation of cations, facilitates the surface reconstruction, and benefits the formation of stable surface oxygen vacancies. Owing to these merits, the O-2 formation is found to be kinetically favorable via the lattice oxygen mechanism.
引用
收藏
页数:11
相关论文
共 67 条
[1]   High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction [J].
Cui, Mingjin ;
Yang, Chunpeng ;
Li, Boyang ;
Dong, Qi ;
Wu, Meiling ;
Hwang, Sooyeon ;
Xie, Hua ;
Wang, Xizheng ;
Wang, Guofeng ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2021, 11 (03)
[2]   Tuning element distribution, structure and properties by composition in high-entropy alloys [J].
Ding, Qingqing ;
Zhang, Yin ;
Chen, Xiao ;
Fu, Xiaoqian ;
Chen, Dengke ;
Chen, Sijing ;
Gu, Lin ;
Wei, Fei ;
Bei, Hongbin ;
Gao, Yanfei ;
Wen, Minru ;
Li, Jixue ;
Zhang, Ze ;
Zhu, Ting ;
Ritchie, Robert O. ;
Yu, Qian .
NATURE, 2019, 574 (7777) :223-+
[3]   Tailoring the Co 3d-O 2p Covalency in LaCoO3 by Fe Substitution To Promote Oxygen Evolution Reaction [J].
Duan, Yan ;
Sun, Shengnan ;
Xi, Shibo ;
Ren, Xiao ;
Zhou, Ye ;
Zhang, Ganlu ;
Yang, Haitao ;
Du, Yonghua ;
Xu, Zhichuan J. .
CHEMISTRY OF MATERIALS, 2017, 29 (24) :10534-10541
[4]  
Fabbri E, 2017, NAT MATER, V16, P925, DOI [10.1038/NMAT4938, 10.1038/nmat4938]
[5]   A new eight-cation inverse high entropy spinel with large configurational entropy in both tetrahedral and octahedral sites: Synthesis and cation distribution by X-ray absorption spectroscopy [J].
Fracchia, Martina ;
Manzoli, Maela ;
Anselmi-Tamburini, Umberto ;
Ghigna, Paolo .
SCRIPTA MATERIALIA, 2020, 188 :26-31
[6]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/nchem.2695, 10.1038/NCHEM.2695]
[7]   Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation [J].
Gu, Kaizhi ;
Zhu, Xiaoyan ;
Wang, Dongdong ;
Zhang, Nana ;
Huang, Gen ;
Li, Wei ;
Long, Peng ;
Tian, Jing ;
Zou, Yuqin ;
Wang, Yanyong ;
Chen, Ru ;
Wang, Shuangyin .
JOURNAL OF ENERGY CHEMISTRY, 2021, 60 (60) :121-126
[8]   The Excellence of Both Worlds: Developing Effective Double Perovskite Oxide Catalyst of Oxygen Reduction Reaction for Room and Elevated Temperature Applications [J].
Hua, Bin ;
Zhang, Ya-Qian ;
Yan, Ning ;
Li, Meng ;
Sun, Yi-Fei ;
Chen, Jian ;
Li, Jian ;
Luo, Jing-Li .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (23) :4106-4112
[9]   Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts [J].
Huang, Zhen-Feng ;
Song, Jiajia ;
Du, Yonghua ;
Xi, Shibo ;
Dou, Shuo ;
Nsanzimana, Jean Marie Vianney ;
Wang, Cheng ;
Xu, Zhichuan J. ;
Wang, Xin .
NATURE ENERGY, 2019, 4 (04) :329-338
[10]   Valence and spin states, and the metal-insulator transition in ferromagnetic La2-xSrxMnNiO6 (x=0,0.2) [J].
Kang, J. -S. ;
Lee, H. J. ;
Kim, D. H. ;
Kolesnik, S. ;
Dabrowski, B. ;
Swierczek, K. ;
Lee, Jieun ;
Kim, Bongjae ;
Min, B. I. .
PHYSICAL REVIEW B, 2009, 80 (04)