Equilibrium and global MHD stability study of KSTAR high beta plasmas under passive and active mode control

被引:26
作者
Katsuro-Hopkins, O. [1 ]
Sabbagh, S. A. [1 ]
Bialek, J. M. [1 ]
Park, H. K. [2 ]
Bak, J. G. [3 ]
Chung, J. [3 ]
Hahn, S. H. [3 ]
Kim, J. Y. [3 ]
Kwon, M. [3 ]
Lee, S. G. [3 ]
Yoon, S. W. [3 ]
You, K. -I. [3 ]
Glasser, A. H. [4 ]
Lao, L. L. [5 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[2] Pohang Univ Sci & Technol, Dept Phys, Pohang, South Korea
[3] Natl Inst Fus Sci, Taejon, South Korea
[4] Los Alamos Natl Lab, Los Alamos, NM USA
[5] Gen Atom Co, San Diego, CA USA
关键词
RESISTIVE WALL MODE; DIII-D; FEEDBACK; TOKAMAK; STABILIZATION; DESIGN; NSTX; ITER;
D O I
10.1088/0029-5515/50/2/025019
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Korea Superconducting Tokamak Advanced Research, KSTAR, is designed to operate a steady-state, high beta plasma while retaining global magnetohydrodynamic (MHD) stability to establish the scientific and technological basis of an economically attractive fusion reactor. An equilibrium model is established for stability analysis of KSTAR. Reconstructions were performed for the experimental start-up scenario and experimental first plasma operation using the EFIT code. The VALEN code was used to determine the vacuum vessel current distribution. Theoretical high beta equilibria spanning the expected operational range are computed for various profiles including generic L-mode and DIII-D experimental H-mode pressure profiles. Ideal MHD stability calculations of toroidal mode number of unity using the DCON code shows a factor of 2 improvement in the wall-stabilized plasma beta limit at moderate to low plasma internal inductance. The planned stabilization system in KSTAR comprises passive stabilizing plates and actively cooled in-vessel control coils (IVCCs) designed for non-axisymmetric field error correction and stabilization of slow timescale MHD modes including resistive wall modes (RWMs). VALEN analysis using standard proportional gain shows that active stabilization near the ideal wall limit can be reached with feedback using the midplane segment of the IVCC. The RMS power required for control using both white noise and noise taken from NSTX active stabilization experiments is computed for beta near the ideal wall limit. Advanced state-space control algorithms yield a factor of 2 power reduction assuming white noise while remaining robust with respect to variations in plasma beta.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Modeling of active control of external magnetohydrodynamic instabilities [J].
Bialek, J ;
Boozer, AH ;
Mauel, ME ;
Navratil, GA .
PHYSICS OF PLASMAS, 2001, 8 (05) :2170-2180
[2]  
Friedland B., 2005, Control System Design: An Introduction to State-Space Methods
[3]  
Glasser A.H., 1997, B AM PHYS SOC, V42, P1848
[4]   Non-linear simulations of internal reconnection events in spherical tokamaks [J].
Hayashi, T ;
Mizuguchi, N ;
Watanabe, TH ;
Todo, Y ;
Sato, T .
NUCLEAR FUSION, 2000, 40 (3Y) :721-726
[5]   Enhanced ITER resistive wall mode feedback performance using optimal control techniques [J].
Katsuro-Hopkins, O. ;
Bialek, J. ;
Maurer, D. A. ;
Navratil, G. A. .
NUCLEAR FUSION, 2007, 47 (09) :1157-1165
[6]   Suppression of rotating external kink instabilities using optimized mode control feedback [J].
Klein, AJ ;
Maurer, DA ;
Pedersen, TS ;
Mauel, ME ;
Navratil, GA ;
Cates, C ;
Shilov, M ;
Liu, Y ;
Stillits, N ;
Bialek, J .
PHYSICS OF PLASMAS, 2005, 12 (04) :1-4
[7]   RECONSTRUCTION OF CURRENT PROFILE PARAMETERS AND PLASMA SHAPES IN TOKAMAKS [J].
LAO, LL ;
STJOHN, H ;
STAMBAUGH, RD ;
KELLMAN, AG ;
PFEIFFER, W .
NUCLEAR FUSION, 1985, 25 (11) :1611-1622
[8]   HIGH INTERNAL INDUCTANCE IMPROVED CONFINEMENT H-MODE DISCHARGES OBTAINED WITH AN ELONGATION RAMP TECHNIQUE IN THE DIII-D TOKAMAK [J].
LAO, LL ;
FERRON, JR ;
TAYLOR, TS ;
BURRELL, KH ;
CHAN, VS ;
CHU, MS ;
DEBOO, JC ;
DOYLE, EJ ;
GREENFIELD, CM ;
GROEBNER, RJ ;
JAMES, R ;
LAZARUS, EA ;
OSBORNE, TH ;
STJOHN, H ;
STRAIT, EJ ;
THOMPSON, SJ ;
TURNBULL, AD ;
WROBLEWSKI, D ;
ZOHM, H .
PHYSICAL REVIEW LETTERS, 1993, 70 (22) :3435-3438
[9]   Design and construction of the KSTAR tokamak [J].
Lee, GS ;
Kwon, M ;
Doh, CJ ;
Hong, BG ;
Kim, K ;
Cho, MH ;
Namkung, W ;
Chang, CS ;
Kim, YC ;
Kim, JY ;
Jhang, HG ;
Lee, DK ;
You, KI ;
Han, JH ;
Kyum, MC ;
Choi, JW ;
Hong, J ;
Kim, WC ;
Kim, BC ;
Choi, JH ;
Seo, SH ;
Na, HK ;
Lee, HG ;
Lee, SG ;
Yoo, SJ ;
Lee, BJ ;
Jung, YS ;
Bak, JG ;
Yang, HL ;
Cho, SY ;
Im, KH ;
Hur, NI ;
Yoo, IK ;
Sa, JW ;
Hong, KH ;
Kim, GH ;
Yoo, BJ ;
Ri, HC ;
Oh, YK ;
Kim, YS ;
Choi, CH ;
Kim, DL ;
Park, YM ;
Cho, KW ;
Ha, TH ;
Hwang, SM ;
Kim, YJ ;
Baang, S ;
Lee, SI ;
Chang, HY .
NUCLEAR FUSION, 2001, 41 (10) :1515-1523
[10]   The design of the KSTAR tokamak [J].
Lee, GS ;
Kim, J ;
Hwang, SM ;
Chang, CS ;
Chang, HY ;
Cho, MH ;
Choi, BH ;
Kim, K ;
Jardin, S ;
Neilson, GH ;
Park, HK ;
Reiersen, W ;
Schmidt, J ;
Young, K ;
Schultz, J ;
Sevier, L ;
Cho, SY ;
Han, JH ;
Hur, NI ;
Im, KH ;
Kim, S ;
Kim, JY ;
Kyum, MC ;
Lee, BJ ;
Lee, DK ;
Lee, SG ;
Yang, HL ;
Hong, BG ;
Hwang, YS ;
Kim, SH ;
Kim, YJ ;
Lim, JY ;
Namkung, W ;
Chung, KH ;
Choi, DI .
FUSION ENGINEERING AND DESIGN, 1999, 46 (2-4) :405-411