Extensions of p-local finite groups

被引:66
作者
Broto, C. [1 ]
Castellana, N.
Grodal, J.
Levi, R.
Oliver, B.
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Spain
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Univ Aberdeen, Dept Math Sci, Aberdeen AB24 3UE, Scotland
[4] Inst Galilee, LAGA, F-93430 Villetaneuse, France
基金
英国工程与自然科学研究理事会;
关键词
classifying space; p-completion; finite groups; fusion;
D O I
10.1090/S0002-9947-07-04225-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A p-local finite group consists of a finite p-group S, together with a pair of categories which encode "conjugacy" relations among subgroups of S, and which are modelled on the fusion in a Sylow p-subgroup of a finite group. It contains enough information to de. ne a classifying space which has many of the same properties as p-completed classifying spaces of finite groups. In this paper, we study and classify extensions of p-local finite groups, and also compute the fundamental group of the classifying space of a p-local finite group.
引用
收藏
页码:3791 / 3858
页数:68
相关论文
共 21 条
[1]  
ADEM A, 1994, COHOMOLOGY FINITE GR
[2]   SYLOW INTERSECTIONS AND FUSION [J].
ALPERIN, JL .
JOURNAL OF ALGEBRA, 1967, 6 (02) :222-&
[3]  
Bousfield A.K., 1972, LECT NOTES MATH, V304
[4]   Subgroup families controlling p-local finite groups [J].
Broto, C ;
Castellana, N ;
Grodal, J ;
Levi, R ;
Oliver, B .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :325-354
[5]   Homotopy equivalences of p-completed classifying spaces of finite groups [J].
Broto, C ;
Levi, R ;
Oliver, B .
INVENTIONES MATHEMATICAE, 2003, 151 (03) :611-664
[6]   The homotopy theory of fusion systems [J].
Broto, C ;
Levi, R ;
Oliver, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) :779-856
[7]   TOWERS OF FIBRATIONS AND HOMOTOPICAL WREATH-PRODUCTS [J].
DWYER, WG ;
KAN, DM ;
SMITH, JH .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 56 (01) :9-28
[8]  
Gabriel P., 1967, CALCULUS FRACTIONS H
[9]   CENTRAL ELEMENTS IN CORE-FREE GROUPS [J].
GLAUBERMAN, G .
JOURNAL OF ALGEBRA, 1966, 4 (03) :403-+
[10]  
Goerss Paul G., 1999, PROGR MATH