SPATIO-TEMPORAL DYNAMICS AND INTERACTION OF LUMP SOLUTIONS FOR THE (4+1)-D FOKAS EQUATION

被引:4
作者
Dai, Hou-Ping [1 ,2 ]
Tan, Wei [2 ]
Zheng, Zhou-Shun [1 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha, Hunan, Peoples R China
[2] Jishou Univ, Coll Math & Stat, Jishou, Peoples R China
来源
THERMAL SCIENCE | 2018年 / 22卷 / 04期
关键词
(4+1)-D Fokas equation; Hirota's bilinear method; lump solution; spatio-temporal dynamics; interaction; EVOLUTION; WAVE;
D O I
10.2298/TSCI1804823D
中图分类号
O414.1 [热力学];
学科分类号
摘要
The (4+1)-D Fokas equation is a new and important physical model. Its Hirota's bilinear form with a perturbation parameter is obtained by an appropriate transformation. A class of lump solutions and three different forms of spatio-temporal structure are obtained. Meanwhile, the theoretical analysis for the change of spatio-temporal structure is discussed by using the extreme value theory of multivariate function. Finally, the interaction between a stripe soliton and lump solution is discussed, and a new wave phenomenon that the lump solution is swallowed and drowned by the stripe soliton is investigated.
引用
收藏
页码:1823 / 1830
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 2016, INT J MOD PHYS B, DOI DOI 10.1142/S021797921640018X
[2]   EVOLUTION IN SPACE AND TIME OF RESONANT WAVE TRIADS .1. PUMP-WAVE APPROXIMATION [J].
CRAIK, ADD ;
ADAM, JA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 363 (1713) :243-255
[3]  
Dai ZD., 2010, Nonlinear Sci. Lett. A, V1, P77
[4]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[5]  
Faraz N, 2012, J COMPUTATIONAL THEO, V10, P664
[6]  
Fokas A. S., 2006, PHYS REV LETT, V96, P190
[7]   Exp-function Method for Fractional Differential Equations [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (06) :363-366
[8]   CONVERTING FRACTIONAL DIFFERENTIAL EQUATIONS INTO PARTIAL DIFFERENTIAL EQUATIONS [J].
He, Ji-Huan ;
Li, Zheng-Biao .
THERMAL SCIENCE, 2012, 16 (02) :331-334
[10]   Lump solutions to the Kadomtsev-Petviashvili equation [J].
Ma, Wen-Xiu .
PHYSICS LETTERS A, 2015, 379 (36) :1975-1978