Deep Learning Using EEG Data in Time and Frequency Domains for Sleep Stage Classification

被引:10
|
作者
Manzano, Marti [1 ]
Guillen, Alberto [1 ]
Rojas, Ignacio [1 ]
Javier Herrera, Luis [1 ]
机构
[1] Univ Granada, Dept Comp Architecture & Comp Technol, Granada, Spain
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I | 2017年 / 10305卷
关键词
Deep learning; Sleep stage classification; Time and frequency domains;
D O I
10.1007/978-3-319-59153-7_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Polysomnography analysis for sleeping disorders is a discipline that is showing interest in the development of reliable classifiers to determine the sleep stage. The most common methods shown in the literature bet for classical learning techniques and statistics that are applied to a reduced number of features in order to tackle the computational load. Nowadays, the application of deep learning to the sleep stage classification problem seems very interesting and novel, therefore, this paper presents a first approximation using a single channel and information from the current epoch to perform the classification. The complete Physionet database has been used in the experiments. Deep learning has been applied to the time and frequency domains from the EEG signal obtaining a good performance and promising further work.
引用
收藏
页码:132 / 141
页数:10
相关论文
共 50 条
  • [1] Combination of EEG Data Time and Frequency Representations in Deep Networks for Sleep Stage Classification
    Manzano, Marti
    Guillen, Alberto
    Rojas, Ignacio
    Javier Herrera, Luis
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2017, PT II, 2017, 10362 : 219 - 229
  • [2] MODELING EEG DATA USING DEEP LEARNING FOR AUTOMATIC SLEEP STAGE CLASSIFICATION IN MICE
    Rose, L.
    Zahid, A. N.
    Piilgaard, L.
    Hviid, C. G.
    Jensen, C. E.
    Sorensen, F. L.
    Andersen, M.
    Radovanovic, T.
    Tsopanidou, A.
    Bastianini, S.
    Berteotti, C.
    Martire, V. L.
    Borsa, M.
    Tisdale, R. K.
    Sun, Y.
    Nedergaard, M.
    Silvani, A.
    Zoccoli, G.
    Adamantidis, A.
    Kilduff, T. S.
    Sakai, N.
    Nishino, S.
    Arthaud, S.
    Peyron, C.
    Fort, P.
    Mignot, E.
    Kornum, B. R.
    SLEEP MEDICINE, 2024, 115 : 411 - 412
  • [3] EEG-Based Multioutput Classification of Sleep Stage and Apnea Using Deep Learning
    Jo, Donghyeok
    Lee, Choel-Hui
    Kim, Hakseung
    Kim, Hayom
    Kim, Jung Bin
    Kim, Dong-Joo
    2023 11TH INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE, BCI, 2023,
  • [4] Automatic Sleep Stage Classification on EEG Signals Using Time-Frequency Representation
    Dequidt, Paul
    Seraphim, Mathieu
    Lechervy, Alexis
    Gaez, Ivan Igor
    Brun, Luc
    Etard, Olivier
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 250 - 259
  • [5] Epileptic EEG Classification by Using Time-Frequency Images for Deep Learning
    Ozdemir, Mehmet Akif
    Cura, Ozlem Karabiber
    Akan, Aydin
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (08)
  • [6] A Deep Learning Method Approach for Sleep Stage Classification with EEG Spectrogram
    Li, Chengfan
    Qi, Yueyu
    Ding, Xuehai
    Zhao, Junjuan
    Sang, Tian
    Lee, Matthew
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (10)
  • [7] Neonatal EEG sleep stage classification based on deep learning and HMM
    Ghimatgar, Hojat
    Kazemi, Kamran
    Helfroush, Mohammad Sadegh
    Pillay, Kirubin
    Dereymaker, Anneleen
    Jansen, Katrien
    De Vos, Maarten
    Aarabi, Ardalan
    JOURNAL OF NEURAL ENGINEERING, 2020, 17 (03)
  • [8] Deep Learning for Sleep Stage Classification
    Wang, Yang
    Wu, Dongrui
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 3833 - 3838
  • [9] Sleep Stage Classification using Deep Learning Techniques: A Review
    Park J.
    An J.
    Choi S.H.
    IEIE Transactions on Smart Processing and Computing, 2023, 12 (01): : 30 - 37
  • [10] Enhanced Sleep Stage Classification Using EEG and EOG: A Novel Approach for Feature Selection with Deep Learning and Gaussian Noise Data Augmentation
    Sifi, Nouria
    Benali, Radhwane
    Dib, Nabil
    Messaoudene, Khadidja
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,