Sustainable reuse of ceramic waste powder as a supplementary cementitious material in recycled aggregate concrete: Mechanical properties, durability and microstructure assessment

被引:55
|
作者
Chen, Xuyong [1 ,2 ]
Zhang, Di [1 ]
Cheng, Shukai [1 ,2 ]
Xu, Xiong [1 ,2 ]
Zhao, Cheng [1 ,2 ]
Wang, Xiangqing [1 ]
Wu, Qiaoyun [1 ,2 ]
Bai, Xixuan [1 ,2 ]
机构
[1] Wuhan Inst Technol, Sch Civil Engn & Architecture, Wuhan 430073, Peoples R China
[2] Hubei Prov Engn Res Ctr Green Civil Engn Mat & St, Wuhan 430073, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2022年 / 52卷
关键词
Recycled aggregate concrete; Ceramic waste powder; Sorptivity; Rapid chloride penetrability; Energy consumption; HIGH-VOLUME; PERFORMANCE; CONSTRUCTION; REPLACEMENT; GENERATION; HYDRATION; INDUSTRY; ENERGY; FRESH;
D O I
10.1016/j.jobe.2022.104418
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Waste concrete as one of construction and demolition wastes is generally collected for the production of recycled coarse aggregate (RCA) to alleviate environmental issues. However, the poor physical performances of RCA limit its application in concrete. Thanks to the rich silica-alumina contents and large reserves in China, the ceramic waste powder (CWP) is promising to be used as an effective supplementary cementitious material (SCM) in cement-based materials. This study reports the development of recycled aggregate concrete (RAC) using CWP as a partial replacement of Portland cement. The mechanical properties, sorptivity, rapid chloride ion penetrability, microstructure, ecological evaluations of RAC containing CWP are determined. The experimental results demonstrate that the eco-friendly RAC incorporated CWP has sufficiently high strength and its compressive strength at 56d is 36.01 MPa. In terms of penetrability behaviors, the rapid chloride penetrability and sorptivity of RAC decrease when the 60% RCA and the 10% CWP are utilized simultaneously. Furthermore, the incorporation of CWP significantly reduces the cost, thermal energy consumption and carbon dioxide emission of concrete. Based on the findings, the applications of CWP in generating a durable eco-friendly construction product are appealing as it not only provides an alternative approach to reuse the wastes, but also achieves superior performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Use of Nano-Silica as a Supplementary Cementitious Material in Recycled Aggregate Concrete: Hydration Characteristics, Mechanical Properties and Microstructure Assessment
    Chen, Guofu
    Pu, Taohong
    Ma, Jingyue
    Zhang, Qin
    Li, Zhukai
    Cheng, Ziyang
    WASTE AND BIOMASS VALORIZATION, 2024, 15 (11) : 6267 - 6279
  • [2] Waste ceramic powder for sustainable concrete production as supplementary cementitious material
    Ozkilic, Yasin Onuralp
    Bahrami, Alireza
    Guzel, Yusuf
    Soganci, Ali Sinan
    Karalar, Memduh
    Althaqafi, Essam
    Celik, Ali Ihsan
    Zeybek, Ozer
    Jagadesh, P.
    FRONTIERS IN MATERIALS, 2025, 11
  • [3] Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties
    Hoppe Filho, J.
    Pires, C. A. O.
    Leite, O. D.
    Garcez, M. R.
    Medeiros, M. H. F.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 296
  • [4] Effect of recycled aggregate and supplementary cementitious material on mechanical properties and chloride permeability of concrete
    Wang, Yuanzhan
    Liu, Zhen
    Wang, Yuchi
    Li, Qingmei
    Gong, Xiaolong
    Zhao, Yupeng
    JOURNAL OF CLEANER PRODUCTION, 2022, 369
  • [5] Enhancing the sustainability, mechanical and durability properties of recycled aggregate concrete using calcium-rich waste glass powder as a supplementary cementitious material: An experimental study and environmental assessment
    Hashim, Ansam Ali
    Anaee, Rana
    Nasr, Mohammed Salah
    SUSTAINABLE CHEMISTRY AND PHARMACY, 2025, 44
  • [6] A study on sustainable foam concrete with waste polyester and ceramic powder: Properties and durability
    Bayraktar, Oguzhan Yavuz
    Tunctan, Mustafa
    Benli, Ahmet
    Turkel, Ihsan
    Kizilay, Goezde
    Kaplan, Gokhan
    JOURNAL OF BUILDING ENGINEERING, 2024, 95
  • [7] Mechanical and Durability Properties of Recycled Aggregate Concrete
    Nanya, Carolina Shimomura
    da Silva Ferreira, Fernanda Giannotti
    da Silva Capuzzo, Valdirene Maria
    MATERIA-RIO DE JANEIRO, 2021, 26 (04):
  • [8] Synergetic recycling of recycled concrete aggregate and waste mussel shell in concrete: Mechanical properties, durability and microstructure
    Chen, Bingcheng
    Peng, Ligang
    Zhong, He
    Zhao, Yuxi
    Meng, Tao
    Zhang, Bo
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 371
  • [9] A study on the strength and durability characteristics of fiber-reinforced recycled aggregate concrete modified with supplementary cementitious material
    Zaid, Osama
    Althoey, Fadi
    Martinez Garcia, Rebeca
    de Prado-Gil, Jesus
    Alsulamy, Saleh
    Abuhussain, Mohammed Awad
    HELIYON, 2023, 9 (09)
  • [10] Concrete made with waste marble powder and supplementary cementitious material for sustainable development
    Ashish, Deepankar Kumar
    JOURNAL OF CLEANER PRODUCTION, 2019, 211 : 716 - 729