Rellich inequalities for polyharmonic operators in plane domains

被引:7
作者
Avkhadiev, F. G. [1 ]
机构
[1] Kazan Fed Univ, Kazan, Russia
基金
俄罗斯基础研究基金会;
关键词
Rellich inequality; polyharmonic operator; uniformly perfect set; Poincare metric; EUCLIDEAN-SPACE; HARDY CONSTANT;
D O I
10.1070/SM8739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Functionals whose values are defined as sharp constants in Rellich inequalities are investigated for polyharmonic operators in plane domains. The weight function is taken to be a power of the distance of a point to the boundary of the domain. Estimates are obtained for arbitrary domains, as is a test for these constants to be positive, and precise values are found for convex domains and for domains close to convex in a certain sense. The case when the weight function is taken to be a power of the coefficient in the Poincare metric is also treated.
引用
收藏
页码:292 / 319
页数:28
相关论文
共 28 条
[1]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[2]  
[Anonymous], 1999, The Maz'ya Anniversary Collection, DOI DOI 10.1007/978-3-0348-8672-7_5
[3]   Sharp constants in hardy type inequalities [J].
Avkhadiev F.G. .
Russian Mathematics, 2015, 59 (10) :53-56
[4]   Sharp estimates of Hardy constants for domains with special boundary properties [J].
Avkhadiev F.G. ;
Shafigullin I.K. .
Russian Mathematics, 2014, 58 (2) :58-61
[5]   Rellich type inequalities in domains of the Euclidean space [J].
Avkhadiev F.G. .
Russian Mathematics, 2016, 60 (1) :60-63
[6]   Hardy-Rellich inequalities in domains of the Euclidean space [J].
Avkhadiev, F. G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) :469-484
[7]   A geometric description of domains whose Hardy constant is equal to 1/4 [J].
Avkhadiev, F. G. .
IZVESTIYA MATHEMATICS, 2014, 78 (05) :855-876
[8]  
Avkhadiev F. G., 2006, Lobachevskii J. Math., V21, P3
[9]  
Avkhadiev F. G, 2006, FUNCTION SPACES APPR, V255, P2, DOI [DOI 10.1134/S008154380604002X, 10.1134/S008154380604002X]
[10]  
Avkhadiev F, 2010, INT MAT SER, V11, P1, DOI 10.1007/978-1-4419-1341-8_1