On the Random Non-Autonomous Logistic Equation with Time-Dependent Coefficients

被引:2
作者
Calatayud, J. [1 ]
Cortes, J-C [1 ]
Dorini, F. A. [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Tecnol Fed Parana, Dept Math, BR-80230901 Curitiba, Parana, Brazil
来源
FLUCTUATION AND NOISE LETTERS | 2021年 / 20卷 / 04期
关键词
Logistic growth model; time-dependent carrying capacity; random parameters; probability density function; DENSITY-FUNCTION; POPULATION; MODELS;
D O I
10.1142/S0219477521500383
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with the non-autonomous logistic growth model with time-dependent intrinsic growth rate and carrying capacity. Accounting for errors in recorded data, randomness is incorporated into the equation by assuming that the input parameters are random variables. The uncertainty of the model output is quantified by approximations of the first probability density function via the random variable transformation method. A numerical example illustrates the results.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Periodic solutions of nonautonomous differential systems modeling obesity population [J].
Arenas, Abraham J. ;
Gonzalez-Parra, Gilberto ;
Jodar, Lucas .
CHAOS SOLITONS & FRACTALS, 2009, 42 (02) :1234-1244
[2]   Constructing reliable approximations of the probability density function to the random heat PDE via a finite difference scheme [J].
Calatayud, J. ;
Cortes, J. -C. ;
Diaz, J. A. ;
Jornet, M. .
APPLIED NUMERICAL MATHEMATICS, 2020, 151 :413-424
[3]   Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model [J].
Calatayud, Julia ;
Carlos Cortes, Juan ;
Jornet, Marc .
CHAOS SOLITONS & FRACTALS, 2020, 133
[4]   Improving the approximation of the probability density function of random nonautonomous logistic-type differential equations [J].
Calatayud, Julia ;
Carlos Cortes, Juan ;
Jornet, Marc .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) :7259-7267
[5]  
Casella G., 2002, STAT INFERENCE
[6]   NONAUTONOMOUS LOGISTIC EQUATIONS AS MODELS OF THE ADJUSTMENT OF POPULATIONS TO ENVIRONMENTAL-CHANGE [J].
COLEMAN, BD .
MATHEMATICAL BIOSCIENCES, 1979, 45 (3-4) :159-173
[7]   OPTIMAL CHOICE OF R FOR A POPULATION IN A PERIODIC ENVIRONMENT [J].
COLEMAN, BD ;
HSIEH, YH ;
KNOWLES, GP .
MATHEMATICAL BIOSCIENCES, 1979, 46 (1-2) :71-85
[8]   Modeling Chickenpox Dynamics with a Discrete Time Bayesian Stochastic Compartmental Model [J].
Corberan-Vallet, A. ;
Santonja, F. J. ;
Jornet-Sanz, M. ;
Villanueva, R-J .
COMPLEXITY, 2018,
[9]   Optimal killing for obligate killers: The evolution of life histories and virulence of semelparous parasites [J].
Ebert, D ;
Weisser, WW .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1384) :985-991
[10]   Modeling of Allee effect in biofilm formation via the stochastic bistable Allen-Cahn partial differential equation [J].
Jornet, Marc .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2021, 39 (01) :22-32