mockrobiota: a Public Resource for Microbiome Bioinformatics Benchmarking

被引:64
作者
Bokulich, Nicholas A. [1 ]
Rideout, Jai Ram [1 ]
Mercurio, William G. [1 ]
Shiffer, Arron [1 ]
Wolfe, Benjamin [2 ]
Maurice, Corinne F. [3 ,4 ]
Dutton, Rachel J. [5 ]
Turnbaugh, Peter J. [6 ]
Knight, Rob [7 ,8 ,9 ]
Caporaso, J. Gregory [1 ,10 ]
机构
[1] No Arizona Univ, Ctr Microbial Genet & Gen, Flagstaff, AZ 86011 USA
[2] Tufts Univ, Dept Biol, Medford, MA USA
[3] McGill Univ, Dept Microbiol & Immunol, Dept Microbiome, Montreal, PQ, Canada
[4] McGill Univ, Dis Tolerance Ctr, Montreal, PQ, Canada
[5] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
[6] Univ Calif San Francisco, Dept Microbiol & Immunol, GW Hooper Fdn, San Francisco, CA 94143 USA
[7] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[8] Univ Calif San Diego, Dept Pediat, La Jolla, CA 92093 USA
[9] Univ Calif San Diego, Ctr Microbiome Innovat, La Jolla, CA 92093 USA
[10] No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA
基金
美国国家科学基金会;
关键词
AMPLICON; DIVERSITY;
D O I
10.1128/mSystems.00062-16
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Mock communities are an important tool for validating, optimizing, and comparing bioinformatics methods for microbial community analysis. We present mockrobiota, a public resource for sharing, validating, and documenting mock community data resources, available at http://caporaso-lab.github.io/mockrobiota/. The materials contained in mockrobiota include data set and sample metadata, expected composition data (taxonomy or gene annotations or reference sequences for mock community members), and links to raw data (e.g., raw sequence data) for each mock community data set. mockrobiota does not supply physical sample materials directly, but the data set metadata included for each mock community indicate whether physical sample materials are available. At the time of this writing, mockrobiota contains 11 mock community data sets with known species compositions, including bacterial, archaeal, and eukaryotic mock communities, analyzed by high-throughput marker gene sequencing. IMPORTANCE The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Grinder: a versatile amplicon and shotgun sequence simulator [J].
Angly, Florent E. ;
Willner, Dana ;
Rohwer, Forest ;
Hugenholtz, Philip ;
Tyson, Gene W. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (12)
[2]  
Bokulich N., 2015, PeerJ PrePrints, V3, pe1502, DOI DOI 10.7287/PEERJ.PREPRINTS.934V2
[3]   Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities [J].
Bokulich, Nicholas A. ;
Mills, David A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (08) :2519-2526
[4]  
Bokulich NA, 2013, NAT METHODS, V10, P57, DOI [10.1038/NMETH.2276, 10.1038/nmeth.2276]
[5]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[6]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522
[7]   Accurate read-based metagenome characterization using a hierarchical suite of unique signatures [J].
Freitas, Tracey Allen K. ;
Li, Po-E ;
Scholz, Matthew B. ;
Chain, Patrick S. G. .
NUCLEIC ACIDS RESEARCH, 2015, 43 (10)
[8]   Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies [J].
Gohl, Daryl M. ;
Vangay, Pajau ;
Garbe, John ;
MacLean, Allison ;
Hauge, Adam ;
Becker, Aaron ;
Gould, Trevor J. ;
Clayton, Jonathan B. ;
Johnson, Timothy J. ;
Hunter, Ryan ;
Knights, Dan ;
Beckman, Kenneth B. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :942-+
[9]   ART: a next-generation sequencing read simulator [J].
Huang, Weichun ;
Li, Leping ;
Myers, Jason R. ;
Marth, Gabor T. .
BIOINFORMATICS, 2012, 28 (04) :593-594
[10]  
James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI 10.1007/978-1-4614-7138-7_1