Detection of discontinuities in scattered data approximation

被引:31
作者
Gutzmer, T
Iske, A
机构
[1] ETH Zentrum, Seminar Appl Math, CH-8092 Zurich, Switzerland
[2] SINTEF, Appl Math, N-0314 Oslo, Norway
关键词
scattered data approximation; radial basis functions; triangulation methods;
D O I
10.1023/A:1019139130423
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Detection Algorithm for the localisation of unknown fault lines of a surface from scattered data is given. The method is based on a local approximation scheme using thin plate splines, and we show that this yields approximation of second order accuracy instead of first order as in the global case. Furthermore, the Detection Algorithm works with triangulation methods, and we show their utility for the approximation df the fault lines. The output of our method provides polygonal curves which can be used for the purpose of constrained surface approximation.
引用
收藏
页码:155 / 170
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1977, Mathematical Software, DOI [DOI 10.1016/B978-0-12-587260-7.50011-X2, 10.1016/B978-0-12-587260-7.50011-X, DOI 10.1016/B978-0-12-587260-7.50011-X]
[2]  
Arge E., 1994, NUMER ALGORITHMS, V8, P149, DOI [10.1007/BF02142688, DOI 10.1007/BF02142688]
[3]  
Bozzini M, 1995, MATHEMATICAL METHODS FOR CURVES AND SURFACES, P41
[4]  
Bozzini M., 1996, ADV TOPICS MULTIVARI, P1
[5]   DATA-DEPENDENT TRIANGULATIONS FOR SCATTERED DATA INTERPOLATION AND FINITE-ELEMENT APPROXIMATION [J].
DYN, N ;
RIPPA, S .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :89-105
[6]   DATA DEPENDENT TRIANGULATIONS FOR PIECEWISE LINEAR INTERPOLATION [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :137-154
[7]   BOUNDARY CORRECTION FOR PIECEWISE LINEAR INTERPOLATION DEFINED OVER DATA-DEPENDENT TRIANGULATIONS [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (02) :179-192
[8]  
DYN N, 1990, ALGORITHMS APPROXIMA, V2, P185
[9]  
Franke R., 1983, SURFACES CAGD, P135
[10]  
FREMMING NP, 1997, NUMERICAL METHODS SO