Inverse optimal control for discrete-time finite-horizon Linear Quadratic Regulators

被引:29
|
作者
Zhang, Han [1 ]
Umenberger, Jack [2 ]
Hu, Xiaoming [1 ]
机构
[1] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
[2] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
关键词
Inverse optimal control; Linear Quadratic Regulator;
D O I
10.1016/j.automatica.2019.108593
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the inverse optimal control problem for discrete-time Linear Quadratic Regulators (LQR), over finite-time horizons. Given observations of the optimal trajectories, or optimal control inputs, to a linear time-invariant system, the goal is to infer the parameters that define the quadratic cost function. The well-posedness of the inverse optimal control problem is first justified. In the noiseless case, when these observations are exact, we analyze the identifiability of the problem and provide sufficient conditions for uniqueness of the solution. In the noisy case, when the observations are corrupted by additive zero-mean noise, we formulate the problem as an optimization problem and prove that the solution to this problem is statistically consistent. The performance of the proposed method is illustrated through numerical examples. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Inverse linear-quadratic discrete-time finite-horizon optimal control for indistinguishable homogeneous agents: A convex optimization approach
    Zhang, Han
    Ringh, Axel
    AUTOMATICA, 2023, 148
  • [2] Discrete-time inverse linear quadratic optimal control over finite time-horizon under noisy output measurements
    Han Zhang
    Yibei Li
    Xiaoming Hu
    Control Theory and Technology, 2021, 19 : 563 - 572
  • [3] Discrete-time inverse linear quadratic optimal control over finite time-horizon under noisy output measurements
    Zhang, Han
    Li, Yibei
    Hu, Xiaoming
    CONTROL THEORY AND TECHNOLOGY, 2021, 19 (04) : 563 - 572
  • [4] Finite-horizon LQ control for unknown discrete-time linear systems via extremum seeking
    Frihauf, Paul
    Krstic, Miroslav
    Basar, Tamer
    EUROPEAN JOURNAL OF CONTROL, 2013, 19 (05) : 399 - 407
  • [5] Statistically consistent inverse optimal control for discrete-time indefinite linear-quadratic systems☆
    Zhang, Han
    Ringh, Axel
    AUTOMATICA, 2024, 166
  • [6] Statistically Consistent Inverse Optimal Control for Linear-Quadratic Tracking with Random Time Horizon
    Zhang, Han
    Ringh, Axel
    Jiang, Weihan
    Li, Shaoyuan
    Hu, Xiaoming
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 1515 - 1522
  • [7] Sequential Inverse Optimal Control of Discrete-Time Systems
    Cao, Sheng
    Luo, Zhiwei
    Quan, Changqin
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (03) : 608 - 621
  • [8] Inverse optimal control for averaged cost per stage linear quadratic regulators
    Zhang, Han
    Ringh, Axel
    SYSTEMS & CONTROL LETTERS, 2024, 183
  • [9] A New Inverse Optimal Control Method for Discrete-time Systems
    Almobaied, Moayed
    Eksin, Ibrahim
    Guzelkaya, Mujde
    ICIMCO 2015 PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL. 1, 2015, : 275 - 280
  • [10] Discrete-time inverse optimal neural control for synchronous generators
    Alanis, Alma Y.
    Ornelas-Tellez, Fernando
    Sanchez, Edgar N.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (02) : 697 - 705