Density of rational points on diagonal quartic surfaces

被引:7
作者
Logan, Adam [1 ]
McKinnon, David [2 ]
van Luijk, Ronald [3 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[2] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[3] Leiden Univ, Inst Math, NL-2300 RA Leiden, Netherlands
关键词
rational points; K3; surfaces; elliptic surfaces; quartic surfaces; ELLIPTIC-CURVES; NUMBER-FIELDS; VARIETIES;
D O I
10.2140/ant.2010.4.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a, b, c, d be nonzero rational numbers whose product is a square, and let V be the diagonal quartic surface in P(3) defined by ax(4) + by(4) + cz(4) + dw(4) = 0. We prove that if V contains a rational point that does not lie on any of the 48 lines on V or on any of the coordinate planes, then the set of rational points on V is dense in both the Zariski topology and the real analytic topology.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 16 条
[1]  
[Anonymous], J LOND MATH SOC
[2]  
Bogomolov F. A., 2000, ASIAN J MATH, V4, P351, DOI 10.4310/AJM.2000.v4.n2.a6
[3]  
Bogomolov FA, 1999, J REINE ANGEW MATH, V511, P87
[4]   Brauer groups of diagonal quartic surfaces [J].
Bright, M .
JOURNAL OF SYMBOLIC COMPUTATION, 2006, 41 (05) :544-558
[5]   The arithmetic of Prym varieties in genus 3 [J].
Bruin, Nils .
COMPOSITIO MATHEMATICA, 2008, 144 (02) :317-338
[6]   Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points [J].
Colliot-Thelene, JL ;
Skorobogatov, AN ;
Swinnerton-Dyer, P .
INVENTIONES MATHEMATICAE, 1998, 134 (03) :579-650
[7]   ON A4 + B4 + C-4 = D4 [J].
ELKIES, ND .
MATHEMATICS OF COMPUTATION, 1988, 51 (184) :825-835
[8]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[9]  
Harris J, 2000, DUKE MATH J, V104, P477
[10]  
HASSETT B, 2001, BOLYAI SOC MATH STUD, V12, P223