Molecular mechanics of Staphylococcus aureus adhesin, CNA, and the inhibition of bacterial adhesion by stretching collagen

被引:42
作者
Madani, Ali [1 ,2 ]
Garakani, Kiavash [1 ,2 ]
Mofrad, Mohammad R. K. [1 ,2 ,3 ]
机构
[1] Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Mol Cell Biomech Lab, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
BINDING PROTEIN; EXPERIMENTAL ENDOCARDITIS; ENTEROCOCCUS-FAECALIS; STREPTOCOCCUS-MUTANS; VIRULENCE FACTOR; HUG MODEL; DYNAMICS; MSCRAMM; LIGAND; DOMAIN;
D O I
10.1371/journal.pone.0179601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacterial adhesion to collagen, the most abundant protein in humans, is a critical step in the initiation and persistence of numerous bacterial infections. In this study, we explore the collagen binding mechanism of the multi-modular cell wall anchored collagen adhesin (CNA) in Staphylococcus aureus and examine how applied mechanical forces can modulate adhesion ability. The common structural-functional elements and domain organization of CNA are present across over 50 genera of bacteria. Through the use of molecular dynamics models and normal mode analysis, we shed light on the CNA's structural and conformational dynamics and its interactions with collagen that lead to collagen binding. Our results suggest that the linker region, CNA(165-173), acts as a hinge exhibiting bending, extensional, and torsional modes of structural flexibility and its residues are key in the interaction of the CNA-collagen complex. Steered molecular dynamics simulations were conducted with umbrella sampling. During the course of these simulations, the ` locking' latch from the CNA N2 domain was dissociated from its groove in the CNA N1 domain, implying the importance of the latch for effective ligand binding. Finally, we observed that the binding efficiency of the CNA N1-N2 domains to collagen decreases greatly with increasing tensile force application to the collagen peptides. Thus, CNA and similar adhesins might preferentially bind to sites in which collagen fibers are cleaved, such as in wounded, injured, or inflamed tissues, or in which the collagenous tissue is less mature. As alternative techniques for control of bacterial infection are in-demand due to the rise of bacterial antibiotic resistance, results from our computational studies with respect to the mechanoregulation of the collagen binding site may inspire new therapeutics and engineering solutions by mechanically preventing colonization and/or further pathogenesis.
引用
收藏
页数:19
相关论文
共 46 条
[1]   The Collagen-Binding Protein Cnm Is Required for Streptococcus mutans Adherence to and Intracellular Invasion of Human Coronary Artery Endothelial Cells [J].
Abranches, Jacqueline ;
Miller, James H. ;
Martinez, Alaina R. ;
Simpson-Haidaris, Patricia J. ;
Burne, Robert A. ;
Lemos, Jose A. .
INFECTION AND IMMUNITY, 2011, 79 (06) :2277-2284
[2]  
Anderson D., 2005, THESIS
[3]  
[Anonymous], 2014, ROBBINS COTRAN PATHO
[4]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly [J].
Buehler, Markus J. .
JOURNAL OF MATERIALS RESEARCH, 2006, 21 (08) :1947-1961
[7]   Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope [J].
Chabria, Mamta ;
Hertig, Samuel ;
Smith, Michael L. ;
Vogel, Viola .
NATURE COMMUNICATIONS, 2010, 1
[8]  
Consortium TU, 2017, UN U PROT KNOWL, V45, P158
[9]   Collagen adhesin-nanoparticle interaction impairs adhesin's ligand binding mechanism [J].
Devi, Aribam Swarmistha ;
Ogawa, Yohsuke ;
Shimoji, Yoshihiro ;
Balakumar, Subramanian ;
Ponnuraj, Karthe .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2012, 1820 (07) :819-828
[10]   Staphylococcus aureus collagen adhesin contributes to the pathogenesis of osteomyelitis [J].
Elasri, MO ;
Thomas, JR ;
Skinner, RA ;
Blevins, JS ;
Beenken, KE ;
Nelson, CL ;
Smeltzer, MS .
BONE, 2002, 30 (01) :275-280