Association Between Oral Microbiota and Cigarette Smoking in the Chinese Population

被引:59
作者
Jia, Yi-Jing [1 ,2 ]
Liao, Ying [2 ]
He, Yong-Qiao [2 ]
Zheng, Mei-Qi [2 ]
Tong, Xia-Ting [1 ,2 ]
Xue, Wen-Qiong [2 ]
Zhang, Jiang-Bo [2 ]
Yuan, Lei-Lei [1 ,2 ]
Zhang, Wen-Li [2 ]
Jia, Wei-Hua [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Publ Hlth, Guangzhou, Peoples R China
[2] Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Guangdong Key Lab Nasopharyngeal Carcinoma Diag &, Canc Ctr,State Key Lab Oncol South China, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
oral microbiota; cigarette smoking; 16S rRNA gene sequencing; China; saliva; COMMUNITIES; DIVERSITY;
D O I
10.3389/fcimb.2021.658203
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The oral microbiota has been observed to be influenced by cigarette smoking and linked to several human diseases. However, research on the effect of cigarette smoking on the oral microbiota has not been systematically conducted in the Chinese population. We profiled the oral microbiota of 316 healthy subjects in the Chinese population by 16S rRNA gene sequencing. The alpha diversity of oral microbiota was different between never smokers and smokers (P = 0.002). Several bacterial taxa were first reported to be associated with cigarette smoking by LEfSe analysis, including Moryella (q = 1.56E-04), Bulleidia (q = 1.65E-06), and Moraxella (q = 3.52E-02) at the genus level and Rothia dentocariosa (q = 1.55E-02), Prevotella melaninogenica (q = 8.48E-08), Prevotella pallens (q = 4.13E-03), Bulleidia moorei (q = 1.79E-06), Rothia aeria (q = 3.83E-06), Actinobacillus parahaemolyticus (q = 2.28E-04), and Haemophilus parainfluenzae (q = 4.82E-02) at the species level. Two nitrite-producing bacteria that can increase the acidity of the oral cavity, Actinomyces and Veillonella, were also enriched in smokers with FDR-adjusted q-values of 3.62E-06 and 1.10E-06, respectively. Notably, we observed that two acid production-related pathways, amino acid-related enzymes (q = 6.19E-05) and amino sugar and nucleotide sugar metabolism (q = 2.63E-06), were increased in smokers by PICRUSt analysis. Finally, the co-occurrence analysis demonstrated that smoker-enriched bacteria were significantly positively associated with each other and were negatively correlated with the bacteria decreased in smokers. Our results suggested that cigarette smoking may affect oral health by creating a different environment by altering bacterial abundance, connections among oral microbiota, and the microbiota and their metabolic function.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[2]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
[3]   Subgingival microbiota in health compared to periodon tis and the influence of smoking [J].
Camelo-Castillo, Anny J. ;
Mira, Alex ;
Pico, Alex ;
Nibali, Luigi ;
Henderson, Brian ;
Donos, Nikolaos ;
Tomas, Inmaculada .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[4]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522
[5]   The interaction between smoking, alcohol and the gut microbiome [J].
Capurso, Gabriele ;
Lahner, Edith .
BEST PRACTICE & RESEARCH CLINICAL GASTROENTEROLOGY, 2017, 31 (05) :579-588
[6]   Genetic influences on the human oral microbiome [J].
Demmitt, Brittany A. ;
Corley, Robin P. ;
Huibregtse, Brooke M. ;
Keller, Matthew C. ;
Hewitt, John K. ;
McQueen, Matthew B. ;
Knight, Rob ;
McDermott, Ivy ;
Krauter, Kenneth S. .
BMC GENOMICS, 2017, 18
[7]   The Human Oral Microbiome [J].
Dewhirst, Floyd E. ;
Chen, Tuste ;
Izard, Jacques ;
Paster, Bruce J. ;
Tanner, Anne C. R. ;
Yu, Wen-Han ;
Lakshmanan, Abirami ;
Wade, William G. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (19) :5002-5017
[8]   Inferring Correlation Networks from Genomic Survey Data [J].
Friedman, Jonathan ;
Alm, Eric J. .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (09)
[9]   Oral microbiome, periodontitis and risk of head and neck cancer [J].
Galvao-Moreira, Leonardo Victor ;
Fontoura Nogueira da Cruz, Maria Carmen .
ORAL ONCOLOGY, 2016, 53 :17-19
[10]   Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies [J].
Gohl, Daryl M. ;
Vangay, Pajau ;
Garbe, John ;
MacLean, Allison ;
Hauge, Adam ;
Becker, Aaron ;
Gould, Trevor J. ;
Clayton, Jonathan B. ;
Johnson, Timothy J. ;
Hunter, Ryan ;
Knights, Dan ;
Beckman, Kenneth B. .
NATURE BIOTECHNOLOGY, 2016, 34 (09) :942-+