The principal problem with principal components regression

被引:27
作者
Artigue, Heidi [1 ]
Smith, Gary [1 ]
机构
[1] Pomona Coll, Dept Econ, 425 N Coll Ave, Claremont, CA 91711 USA
来源
COGENT MATHEMATICS & STATISTICS | 2019年 / 6卷
关键词
principal components regression; PCA; factor analysis; Big Data; data reduction; VARIABLES; MODELS; NUMBER;
D O I
10.1080/25742558.2019.1622190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Principal components regression (PCR) reduces a large number of explanatory variables in a regression model down to a small number of principal components. PCR is thought to be more useful, the more numerous the potential explanatory variables. The reality is that a large number of candidate explanatory variables does not make PCR more valuable; instead, it magnifies the failings of PCR.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Teaching Principal Components Using Correlations [J].
Westfall, Peter H. ;
Arias, Andrea L. ;
Fulton, Lawrence V. .
MULTIVARIATE BEHAVIORAL RESEARCH, 2017, 52 (05) :648-660
[42]   Spectral simulation study on the influence of the principal component analysis step on principal component regression [J].
Hasegawa, T .
APPLIED SPECTROSCOPY, 2006, 60 (01) :95-98
[43]   Principal-component-based multivariate regression for genetic association studies of metabolic syndrome components [J].
Mei, Hao ;
Chen, Wei ;
Dellinger, Andrew ;
He, Jiang ;
Wang, Meng ;
Yau, Canddy ;
Srinivasan, Sathanur R. ;
Berenson, Gerald S. .
BMC GENETICS, 2010, 11
[44]   Principal component-guided sparse regression [J].
Tay, Jingyi K. ;
Friedman, Jerome ;
Tibshirani, Robert .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04) :1222-1257
[45]   Optimization of management zone delineation by using spatial principal components [J].
Gavioli, Alan ;
Souza, Eduardo Godoy ;
Bazzi, Claudio Leones ;
Carvalho Guedes, Luciana Pagliosa ;
Schenatto, Kelyn .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 127 :302-310
[46]   Principal regression for high dimensional covariance matrices [J].
Zhao, Yi ;
Caffo, Brian ;
Luo, Xi .
ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02) :4192-4235
[47]   Regression based thresholds in principal loading analysis [J].
Bauer, Jan O. ;
Drabant, Bernhard .
JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
[48]   Molecular analyses of the principal components of response strength [J].
Killeen, PR ;
Hall, SS ;
Reilly, MP ;
Kettle, LC .
JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR, 2002, 78 (02) :127-160
[49]   A Simple Review of Sparse Principal Components Analysis [J].
Feng, Chun-Mei ;
Gao, Ying-Lian ;
Liu, Jin-Xing ;
Zheng, Chun-Hou ;
Li, Sheng-Jun ;
Wang, Dong .
INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 :374-383
[50]   The principal correlation components estimator and its optimality [J].
Guo, Wenxing ;
Liu, Xiaohui ;
Zhang, Shangli .
STATISTICAL PAPERS, 2016, 57 (03) :755-779