The principal problem with principal components regression

被引:27
作者
Artigue, Heidi [1 ]
Smith, Gary [1 ]
机构
[1] Pomona Coll, Dept Econ, 425 N Coll Ave, Claremont, CA 91711 USA
来源
COGENT MATHEMATICS & STATISTICS | 2019年 / 6卷
关键词
principal components regression; PCA; factor analysis; Big Data; data reduction; VARIABLES; MODELS; NUMBER;
D O I
10.1080/25742558.2019.1622190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Principal components regression (PCR) reduces a large number of explanatory variables in a regression model down to a small number of principal components. PCR is thought to be more useful, the more numerous the potential explanatory variables. The reality is that a large number of candidate explanatory variables does not make PCR more valuable; instead, it magnifies the failings of PCR.
引用
收藏
页数:11
相关论文
共 50 条
[31]   FACTOR-ANALYSIS AND PRINCIPAL COMPONENTS [J].
SCHNEEWEISS, H ;
MATHES, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1995, 55 (01) :105-124
[32]   Detecting the Dimensionality for Principal Components Model [J].
Wang, Liuxia ;
Li, Yulin .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (06) :1073-1082
[33]   Computing Robust Principal Components by A* Search [J].
Shah, Swair ;
He, Baokun ;
Maung, Crystal ;
Schweitzer, Haim .
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2018, 27 (07)
[34]   A principal components algorithm for spectra normalisation [J].
Romano, Rocco ;
Acernese, Fausto ;
Canonico, Rosangela ;
Giordano, Gerardo ;
Barone, Fabrizio .
INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2013, 13 (04) :357-369
[35]   SPARSE AND FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS [J].
Allen, Genevera I. ;
Weylandt, Michael .
2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, :11-16
[36]   A clustering approach to interpretable principal components [J].
Enki, Doyo G. ;
Trendafilov, Nickolay T. ;
Jolliffe, Ian T. .
JOURNAL OF APPLIED STATISTICS, 2013, 40 (03) :583-599
[37]   Geographically weighted principal components analysis [J].
Harris, Paul ;
Brunsdon, Chris ;
Charlton, Martin .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2011, 25 (10) :1717-1736
[38]   Bayesian estimation of the number of principal components [J].
Seghouane, Abd-Krim ;
Cichocki, Andrzej .
SIGNAL PROCESSING, 2007, 87 (03) :562-568
[39]   Notes on the prehistory of principal components analysis [J].
Farebrother, Richard W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 188
[40]   Principal components adjusted variable screening [J].
Liu, Zhongkai ;
Song, Rui ;
Zeng, Donglin ;
Zhang, Jiajia .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 110 :134-144