共 50 条
The principal problem with principal components regression
被引:27
作者:
Artigue, Heidi
[1
]
Smith, Gary
[1
]
机构:
[1] Pomona Coll, Dept Econ, 425 N Coll Ave, Claremont, CA 91711 USA
来源:
COGENT MATHEMATICS & STATISTICS
|
2019年
/
6卷
关键词:
principal components regression;
PCA;
factor analysis;
Big Data;
data reduction;
VARIABLES;
MODELS;
NUMBER;
D O I:
10.1080/25742558.2019.1622190
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Principal components regression (PCR) reduces a large number of explanatory variables in a regression model down to a small number of principal components. PCR is thought to be more useful, the more numerous the potential explanatory variables. The reality is that a large number of candidate explanatory variables does not make PCR more valuable; instead, it magnifies the failings of PCR.
引用
收藏
页数:11
相关论文
共 50 条