The principal problem with principal components regression

被引:27
作者
Artigue, Heidi [1 ]
Smith, Gary [1 ]
机构
[1] Pomona Coll, Dept Econ, 425 N Coll Ave, Claremont, CA 91711 USA
来源
COGENT MATHEMATICS & STATISTICS | 2019年 / 6卷
关键词
principal components regression; PCA; factor analysis; Big Data; data reduction; VARIABLES; MODELS; NUMBER;
D O I
10.1080/25742558.2019.1622190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Principal components regression (PCR) reduces a large number of explanatory variables in a regression model down to a small number of principal components. PCR is thought to be more useful, the more numerous the potential explanatory variables. The reality is that a large number of candidate explanatory variables does not make PCR more valuable; instead, it magnifies the failings of PCR.
引用
收藏
页数:11
相关论文
共 50 条
[11]   Principal Dynamical Components [J].
de la Iglesia, Manuel D. ;
Tabak, Esteban G. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (01) :48-82
[12]   Principal components of mania [J].
González-Pinto, A ;
Ballesteros, J ;
Aldama, A ;
de Heredia, JLP ;
Gutierrez, M ;
Mosquera, F ;
González-Pinto, A .
JOURNAL OF AFFECTIVE DISORDERS, 2003, 76 (1-3) :95-102
[13]   Application of maximum likelihood principal components regression to fluorescence emission spectra [J].
Schreyer, SK ;
Bidinosti, M ;
Wentzell, PD .
APPLIED SPECTROSCOPY, 2002, 56 (06) :789-796
[14]   A Numerical Procedure for Multivariate Calibration Using Heteroscedastic Principal Components Regression [J].
Duailibe Monteiro, Alessandra da Rocha ;
Feital, Thiago de Sa ;
Pinto, Jose Carlos .
PROCESSES, 2021, 9 (09)
[15]   Principal Components Analysis Random Discretization Ensemble for Big Data [J].
Garcia-Gil, Diego ;
Ramirez-Gallego, Sergio ;
Garcia, Salvador ;
Herrera, Francisco .
KNOWLEDGE-BASED SYSTEMS, 2018, 150 :166-174
[16]   Envelopes and principal component regression∗† [J].
Zhang, Xin ;
Deng, Kai ;
Mai, Qing .
ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (02) :2447-2484
[17]   Nonparametric Principal Subspace Regression [J].
Zhou, Yang ;
Koudstaal, Mark ;
Yu, Dengdeng ;
Kong, Dehan ;
Yao, Fang .
JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
[18]   Solving the many-variables problem in MICE with principal component regression [J].
Costantini, Edoardo ;
Lang, Kyle M. M. ;
Sijtsma, Klaas ;
Reeskens, Tim .
BEHAVIOR RESEARCH METHODS, 2024, 56 (03) :1715-1737
[19]   PRINCIPAL COMPONENTS REGRESSION: MULTIVARIATE, GENE-BASED TESTS IN IMAGING GENOMICS [J].
Hibar, Derrek P. ;
Stein, Jason L. ;
Kohannim, Omid ;
Jahanshad, Neda ;
Jack, Clifford R., Jr. ;
Weiner, Michael W. ;
Toga, Arthur W. ;
Thompson, Paul M. .
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, :289-293
[20]   The principal components of response strength [J].
Killeen, PR ;
Hall, SS .
JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR, 2001, 75 (02) :111-134