The principal problem with principal components regression

被引:27
作者
Artigue, Heidi [1 ]
Smith, Gary [1 ]
机构
[1] Pomona Coll, Dept Econ, 425 N Coll Ave, Claremont, CA 91711 USA
来源
COGENT MATHEMATICS & STATISTICS | 2019年 / 6卷
关键词
principal components regression; PCA; factor analysis; Big Data; data reduction; VARIABLES; MODELS; NUMBER;
D O I
10.1080/25742558.2019.1622190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Principal components regression (PCR) reduces a large number of explanatory variables in a regression model down to a small number of principal components. PCR is thought to be more useful, the more numerous the potential explanatory variables. The reality is that a large number of candidate explanatory variables does not make PCR more valuable; instead, it magnifies the failings of PCR.
引用
收藏
页数:11
相关论文
共 34 条
[1]  
Alibuhtto M. C., 2015, P 5 INT S 2015 S E U
[2]  
Athey S, 2018, The economics of artificial intelligence: An agenda, P507
[3]   A nonlinear principal component analysis to study archeometric data [J].
Bitetto, Alessandro ;
Mangone, Annarosa ;
Mininni, Rosa Maria ;
Giannossa, Lorena C. .
JOURNAL OF CHEMOMETRICS, 2016, 30 (07) :405-415
[4]   Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action [J].
Chen K. ;
Zhang X. ;
Petersen A. ;
Müller H.-G. .
Statistics in Biosciences, 2017, 9 (2) :582-604
[5]   THE USE OF PRINCIPAL COMPONENTS IN THE ANALYSIS OF NEAR-INFRARED SPECTRA [J].
COWE, IA ;
MCNICOL, JW .
APPLIED SPECTROSCOPY, 1985, 39 (02) :257-266
[6]   Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis [J].
Deng, Xiaogang ;
Tian, Xuemin ;
Chen, Sheng .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2013, 127 :195-209
[7]   On the number of principal components: A test of dimensionality based on measurements of similarity between matrices [J].
Dray, Stephane .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) :2228-2237
[8]   The raise method. An alternative procedure to estimate the parameters in presence of collinearity [J].
Garcia Garcia, Catalina ;
Garcia Perez, Jose ;
Soto Liria, Jose .
QUALITY & QUANTITY, 2011, 45 (02) :403-423
[9]   BIG DATA AND DATA SCIENCE METHODS FOR MANAGEMENT RESEARCH [J].
George, Gerard ;
Osinga, Ernst C. ;
Lavie, Dovev ;
Scott, Brent A. .
ACADEMY OF MANAGEMENT JOURNAL, 2016, 59 (05) :1493-1507
[10]   Searching for the core variables in principal components analysis [J].
Gimenez, Yanina ;
Giussani, Guido .
BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (04) :730-754