Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode

被引:42
作者
Kim, So Yeun [1 ]
Yang, Kap Seung [2 ]
Kim, Bo-Hye [3 ]
机构
[1] Chonnam Natl Univ, Dept Adv Chem & Engn, Kwangju, South Korea
[2] Chonnam Natl Univ, Alan G MacDiarmid Energy Res Inst, Grad Sch, Dept Polymer Engn, Kwangju, South Korea
[3] Daegu Univ, Div Sci Educ, Gyongsan, Gyeongsangbuk D, South Korea
关键词
Graphene-wrapped Si nanoparticle; Carbon nanofiber; Electrospinning; Lithium ion battery; LITHIUM STORAGE; HIGH-CAPACITY; NEGATIVE-ELECTRODE; COMPOSITE ANODE; SPHERES; FABRICATION; NANOTUBES; NANOWIRES; BEHAVIOR; SIZE;
D O I
10.1016/j.jpowsour.2014.09.109
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel anode material for lithium-ion batteries, graphene-wrapped Si nanoparticles (NPs) embedded in carbon composite nanofibers (CCNFs) with G/Si, is fabricated by electrospinning and subsequent thermal treatment. In CCNFs with G/Si, Si NPs are distributed and preserved inside the CNF surface because the graphene wrapping the Si NPs help prevent agglomeration and ensure a good dispersion of Si NPs inside the CNF matrix. 20-GSP prepared from a weight ratio of 20 wt% of G/Si to polyacrylonitrile exhibits stable capacity retention and a reversible capacity of above 600 mAh g(-1) up to 100 cycles. The high cycling performance and superior reversible capacity of the 20-GSP anode can be attributed to the one-dimensional nanofibrous structure with non-agglomerated Si NPs in the CNF matrix, which promotes charge transfer, maintains a stable electrical contact, and buffers the Si volume expansion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:404 / 412
页数:9
相关论文
共 64 条
[1]   Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance [J].
Cakan, Rezan Demir ;
Titirici, Maria-Magdalena ;
Antonietti, Markus ;
Cui, Guanglei ;
Maier, Joachim ;
Hu, Yong-Sheng .
CHEMICAL COMMUNICATIONS, 2008, (32) :3759-3761
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[4]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[5]   Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode [J].
Chen, Libao ;
Xie, Xiaohua ;
Wang, Baofeng ;
Wang, Ke ;
Xie, Jingying .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 131 (1-3) :186-190
[6]   Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure [J].
Chen, Wufeng ;
Yan, Lifeng .
NANOSCALE, 2010, 2 (04) :559-563
[7]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[8]   High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J].
Cui, Zhi-Min ;
Hang, Ling-Yan ;
Song, Wei-Guo ;
Guo, Yu-Guo .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1162-1166
[9]   Silicon and carbon based composite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :557-563
[10]   Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage [J].
Deng, Da ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1841-1846