FADD is required for DR4-and DR5-mediated apoptosis - Lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts

被引:197
作者
Kuang, AA
Diehl, GE
Zhang, JK
Winoto, A
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Canc Res Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Div Immunol, Berkeley, CA 94720 USA
关键词
D O I
10.1074/jbc.C000284200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a member of the tumor necrosis factor family that can kill a wide variety of tumor cells but not normal cells. TRAIL-induced apoptosis in humans is mediated by its receptors DR4 (TRAIL-R1) and DR5 (TRAIL-R2). What constitutes the signaling molecules downstream of these receptors, however, remains highly controversial. Using the FADD dominant negative molecule, several groups have reached different conclusions with respect to the role of FADD in TRAIL-induced apoptosis. More recently, using FADD-deficient (-/-) mouse embryonic fibroblasts, Yeh ct at (Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H.-B., Elia, A. J,, Shahinian, A, Ng, M., Wakeham, A, Khoo, W., Mitchell, K., El-Deiry, W. S., Lowe, S. W., Goeddel, D. V., and Mak, T,W. (1998) Science 279, 1954-1958) concluded that DR4 utilizes a FADD-independent apoptotic pathway. The latter experiment, however, involved transient overexpression, which often leads to nonspecific aggregation of death domain-containing receptors. To address this issue in a more physiological setting, we stably transfected mouse DR4/5, human DR4, or human DR5 into FADD(-/-) mouse embryonic fibroblast cells. We showed that FADD(-/-) MEF cells stably transfected with TRAIL receptors are resistant to TRAIL-mediated cell death. In contrast, TRAIL receptors stably transfected into heterozygous FADD(+/-) cells or FADD(-/-) cells reconstituted with a FADD retroviral construct are sensitive to the TRAIL cytotoxic effect. We conclude that FADD is required for DR4- and DR5-mediated apoptosis.
引用
收藏
页码:25065 / 25068
页数:4
相关论文
共 35 条
  • [1] Death receptors: Signaling and modulation
    Ashkenazi, A
    Dixit, VM
    [J]. SCIENCE, 1998, 281 (5381) : 1305 - 1308
  • [2] TRAIL receptor-2 signals apoptosis through FADD and caspase-8
    Bodmer, JL
    Holler, N
    Reynard, S
    Vinciguerra, P
    Schneider, P
    Juo, P
    Blenis, J
    Tschopp, J
    [J]. NATURE CELL BIOLOGY, 2000, 2 (04) : 241 - 243
  • [3] A NOVEL PROTEIN THAT INTERACTS WITH THE DEATH DOMAIN OF FAS/APO1 CONTAINS A SEQUENCE MOTIF RELATED TO THE DEATH DOMAIN
    BOLDIN, MP
    VARFOLOMEEV, EE
    PANCER, Z
    METT, IL
    CAMONIS, JH
    WALLACH, D
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (14) : 7795 - 7798
  • [4] Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death
    Boldin, MP
    Goncharov, TM
    Goltsev, YV
    Wallach, D
    [J]. CELL, 1996, 85 (06) : 803 - 815
  • [5] Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-κB pathway
    Chaudhary, PM
    Eby, M
    Jasmin, A
    Bookwalter, A
    Murray, J
    Hood, L
    [J]. IMMUNITY, 1997, 7 (06) : 821 - 830
  • [6] FADD, A NOVEL DEATH DOMAIN-CONTAINING PROTEIN, INTERACTS WITH THE DEATH DOMAIN OF FAS AND INITIATES APOPTOSIS
    CHINNAIYAN, AM
    OROURKE, K
    TEWARI, M
    DIXIT, VM
    [J]. CELL, 1995, 81 (04) : 505 - 512
  • [7] Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95
    Chinnaiyan, AM
    ORourke, K
    Yu, GL
    Lyons, RH
    Garg, M
    Duan, DR
    Xing, L
    Gentz, R
    Ni, J
    Dixit, VM
    [J]. SCIENCE, 1996, 274 (5289) : 990 - 992
  • [8] The novel receptor TRAIL-R4 induces NF-κB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain
    Degli-Esposti, MA
    Dougall, WC
    Smolak, PJ
    Waugh, JY
    Smith, CA
    Goodwin, RG
    [J]. IMMUNITY, 1997, 7 (06) : 813 - 820
  • [9] Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family
    DegliEsposti, MA
    Smolak, PJ
    Walczak, H
    Waugh, J
    Huang, CP
    DuBose, RF
    Goodwin, RG
    Smith, CA
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 186 (07) : 1165 - 1170
  • [10] Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL
    Emery, JG
    McDonnell, P
    Burke, MB
    Deen, KC
    Lyn, S
    Silverman, C
    Dul, E
    Appelbaum, ER
    Eichman, C
    DiPrinzio, R
    Dodds, RA
    James, IE
    Rosenberg, M
    Lee, JC
    Young, PR
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) : 14363 - 14367