Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology

被引:29
作者
Cuvier, C. [1 ,7 ]
Srinath, S. [1 ,6 ]
Stanislas, M. [1 ,6 ]
Foucaut, J. M. [1 ,6 ]
Laval, J. P. [1 ,7 ]
Kaehler, C. J. [2 ]
Hain, R. [2 ]
Scharnowski, S. [2 ]
Schroeder, A. [3 ]
Geisler, R. [3 ]
Agocs, J. [3 ]
Roese, A. [3 ]
Willert, C. [4 ]
Klinner, J. [4 ]
Amili, O. [5 ]
Atkinson, C. [5 ]
Soria, J. [5 ]
机构
[1] Univ Lille Nord France, LML, Lille, France
[2] Bundeswehr Univ Munich, Inst Fluid Mech & Aerodynam, Neubiberg, Germany
[3] German Aerosp Ctr DLR, Inst Aerodynam & Flow Technol, Gottingen, Germany
[4] German Aerosp Ctr DLR, Inst Prop Technol, Cologne, Germany
[5] Monash Univ, LTRAC, Melbourne, Vic, Australia
[6] Cent Lille, Villeneuve Dascq, France
[7] CNRS, LML, Villeneuve Dascq, France
来源
JOURNAL OF TURBULENCE | 2017年 / 18卷 / 10期
基金
澳大利亚研究理事会;
关键词
Turbulent boundary layers; PIV; adverse pressure gradient; PARTICLE IMAGE VELOCIMETRY; ADVERSE-PRESSURE-GRADIENT; NEAR-WALL TURBULENCE; DIRECT NUMERICAL-SIMULATION; CHANNEL FLOW; SEPARATION; INSTABILITY; CYCLE; MODEL; BUMP;
D O I
10.1080/14685248.2017.1342827
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Over the last years, the observation of large-scale structures in turbulent boundary layer flows has stimulated intense experimental and numerical investigations. Nevertheless, partly due to the lack of comprehensive experimental data at sufficiently high Reynolds number, our understanding of turbulence near walls, especially in decelerating situations, is still quite limited. The aim of the present contribution is to combine the equipment and skills of several teams to perform a detailed characterisation of a large-scale turbulent boundary layer under adverse pressure gradient. Extensive particle image velocimetry (PIV) measurements are performed, including a set-up with 16 sCMOS cameras allowing the characterisation of the boundary layer on 3.5m, stereo PIV and high resolution near wall measurements. In this paper, detailed statistics are presented and discussed, boundary conditions are carefully characterised, making this experiment a challenging test case for numerical simulation.
引用
收藏
页码:929 / 972
页数:44
相关论文
共 46 条
  • [1] Hairpin vortex organization in wall turbulence
    Adrian, Ronald J.
    [J]. PHYSICS OF FLUIDS, 2007, 19 (04)
  • [2] Reynolds number scaling in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient
    Aubertine, Carolyn D.
    Eaton, John K.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2006, 27 (04) : 566 - 575
  • [3] Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry
    Carlier, J
    Stanislas, M
    [J]. JOURNAL OF FLUID MECHANICS, 2005, 535 : 143 - 188
  • [4] Characterisation of a high Reynolds number boundary layer subject to pressure gradient and separation
    Cuvier, C.
    Foucaut, J. M.
    Braud, C.
    Stanislas, M.
    [J]. JOURNAL OF TURBULENCE, 2014, 15 (08): : 473 - 515
  • [5] High spatial range velocity measurements in a high Reynolds number turbulent boundary layer
    de Silva, C. M.
    Gnanamanickam, E. P.
    Atkinson, C.
    Buchmann, N. A.
    Hutchins, N.
    Soria, J.
    Marusic, I.
    [J]. PHYSICS OF FLUIDS, 2014, 26 (02)
  • [6] An experimental study of a boundary layer that is maintained on the verge of separation
    Elsberry, K
    Loeffler, J
    Zhou, MD
    Wygnanski, I
    [J]. JOURNAL OF FLUID MECHANICS, 2000, 423 : 227 - 261
  • [7] Influence of light sheet separation on SPIV measurement in a large field spanwise plane
    Foucaut, J. M.
    Coudert, S.
    Braud, C.
    Velte, C.
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2014, 25 (03)
  • [8] George W. K., 1997, Applied Mechanics Reviews, V50, P689, DOI 10.1115/1.3101858
  • [9] George WK, 2010, APS B
  • [10] George WK, 2010, ITI 2010 TURB C SEP