Existence of parabolic minimizers on metric measure spaces

被引:5
作者
Collins, Michael [1 ]
Heran, Andreas [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Existence; Parabolic minimizers; Metric measure spaces; SOBOLEV SPACES; POINCARE INEQUALITIES; HIGHER INTEGRABILITY; HARMONIC-FUNCTIONS; QUASI-MINIMIZERS; REGULARITY; FUNCTIONALS; STABILITY; GROWTH; QUASIMINIMIZERS;
D O I
10.1016/j.na.2018.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objects of our studies are vector valued parabolic minimizers u associated to a convex Caratheodory integrand f obeying a p-growth assumption from below and a certain monotonicity condition in the gradient variable. Here, the functions being considered are defined on a metric measure space (X, d, mu). For such parabolic minimizers that coincide with a time-independent Cauchy-Dirichlet datum uo on the parabolic boundary of a space-time-cylinder Omega x (0, T) with an open subset Omega subset of X and T > 0, we prove existence in the parabolic Newtonian space L-P (0, T; N-1,N-p (Omega; R-N)). In this paper we generalize results from Biigelein et al. (2014,2015) to the metric setting and argue completely on a variational level. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:56 / 83
页数:28
相关论文
共 52 条
[1]  
[Anonymous], 1992, Measure theory and fine properties of functions
[2]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[3]   Poincare inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces [J].
Bjoern, Jana ;
Shanmugalingam, Nageswari .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :190-208
[4]  
Björn A, 2003, J REINE ANGEW MATH, V556, P173
[5]  
Bjorn A, 2011, EMS TRACTS MATH
[6]  
Björn J, 2001, ANN ACAD SCI FENN-M, V26, P175
[7]   Non local diffusion equations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo ;
Signoriello, Stefano .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 432 (01) :398-428
[8]   Existence of evolutionary variational solutions via the calculus of variations [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (12) :3912-3942
[9]   Parabolic Systems with p, q-Growth: A Variational Approach [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :219-267
[10]   The obstacle problem for parabolic minimizers [J].
Bogelein, Verena ;
Duzaar, Frank ;
Scheven, Christoph .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (04) :1273-1310