Properties of Multivariate b-Ary Stern Polynomials

被引:0
作者
Dilcher, Karl [1 ]
Ericksen, Larry [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[2] POB 172, Millville, NJ 08332 USA
关键词
Stern sequence; Stern polynomials; Generating functions;
D O I
10.1007/s00026-019-00464-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an integer base b = 2, we investigate a multivariate b-ary polynomial analogue of Stern's diatomic sequence which arose in the study of hyper b-ary representations of integers. We derive various properties of these polynomials, including a generating function and identities that lead to factorizations of the polynomials. We use some of these results to extend an identity of Courtright and Sellers on the b-ary Stern numbers sb(n). We also extend a result of Defant and a result of Coons and Spiegelhofer on the maximal values of sb(n) within certain intervals. Mathematics Subject Classification. Primary 05A15; Secondary 11B83.
引用
收藏
页码:695 / 711
页数:17
相关论文
共 11 条
[1]  
Coons M, 2017, J INTEGER SEQ, V20
[2]  
COURTRIGHT K.M., 2004, INTEGERS, V4
[3]  
Defant C, 2016, ELECTRON J COMB, V23
[4]  
Dilcher K., 2015, ELECTRON J COMB, V22, pP2
[5]  
Dilcher K., 2017, B POL ACAD SCI MATH, V65, P11
[6]  
Dilcher K, 2018, B POL ACAD SCI MATH, V66, P9, DOI [10.4064/ba8126-12-2017, DOI 10.4064/BA8126-12-2017]
[7]  
Dilcher K, 2018, J INTEGER SEQ, V21
[8]  
Lehmer D.H., 1929, Am. Math. Mon., V36, P59
[9]  
OEIS Foundation, The On-Line Encyclopedia of Integer Sequences
[10]  
REZNICK B, 1990, PROG MATH, V85, P451