Multi-dimensional explorations in supernova theory

被引:61
作者
Burrows, Adam [1 ]
Dessart, Luc
Ott, Christian D.
Livne, Eli
机构
[1] Univ Arizona, Dept Astron, Tucson, AZ 85721 USA
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Potsdam, Germany
[3] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2007年 / 442卷 / 1-6期
基金
美国国家科学基金会;
关键词
supernova theory; multi-dimensional simulations; neutrinos; acoustic power; stellar pulsations;
D O I
10.1016/j.physrep.2007.02.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we bring together various of our published and unpublished findings from our recent 2D multi-group, flux-limited radiation hydrodynamic simulations of the collapse and explosion of the cores of massive stars. Aided by 2D and 3D graphical renditions, we motivate the acoustic mechanism of core-col lapse supernova explosions and explain, as best we currently can, the phases and phenomena that attend this mechanism. Two major foci of our presentation are the outer shock instability and the inner core g-mode oscillations. The former sets the stage for the latter, which damp by the generation of sound. This sound propagates outward to energize the explosion and is relevant only if the core has not exploded earlier by some other means. Hence, it is a more delayed mechanism than the traditional neutrino mechanism that has been studied for the last twenty years since it was championed by Bethe and Wilson. We discuss protoneutron star convection, accretion-induced-collapse, gravitational wave emissions, pulsar kicks, the angular anisotropy of the neutrino emissions, a subset of numerical issues, and a new code we are designing that should supercede our current supernova code VULCAN/2D. Whatever ideas last from this current generation of numerical results, and whatever the eventual mechanism(s), we conclude that the breaking of spherical symmetry will survive as one of the crucial keys to the supernova puzzle. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 37
页数:15
相关论文
共 48 条
[1]   REVIVAL OF A STALLED SUPERNOVA SHOCK BY NEUTRINO HEATING [J].
BETHE, HA ;
WILSON, JR .
ASTROPHYSICAL JOURNAL, 1985, 295 (01) :14-23
[2]   The spherical accretion shock instability in the linear regime [J].
Blondin, JM ;
Mezzacappa, A .
ASTROPHYSICAL JOURNAL, 2006, 642 (01) :401-409
[3]   Stability of standing accretion shocks, with an eye toward core-collapse supernovae [J].
Blondin, JM ;
Mezzacappa, A ;
DeMarino, C .
ASTROPHYSICAL JOURNAL, 2003, 584 (02) :971-980
[4]  
Bruenn SW, 1996, ASTROPHYS J, V458, pL71, DOI 10.1086/309921
[5]  
BRUENN SW, 2005, ASTROPH0404099
[6]   Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - II. Models for different progenitor stars [J].
Buras, R. ;
Janka, H. -Th. ;
Rampp, M. ;
Kifonidis, K. .
ASTRONOMY & ASTROPHYSICS, 2006, 457 (01) :281-U221
[7]   Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport -: I.: Numerical method and results for a 15 M⊙ star [J].
Buras, R ;
Rampp, M ;
Janka, HT ;
Kifonidis, K .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (03) :1049-U136
[8]   A THEORY OF SUPERNOVA EXPLOSIONS [J].
BURROWS, A ;
GOSHY, J .
ASTROPHYSICAL JOURNAL, 1993, 416 (02) :L75-L78
[9]   Features of the acoustic mechanism of core-collapse supernova explosions [J].
Burrows, A. ;
Livne, E. ;
Dessart, L. ;
Ott, C. D. ;
Murphy, J. .
ASTROPHYSICAL JOURNAL, 2007, 655 (01) :416-433
[10]   A new mechanism for core-collapse supernova explosions [J].
Burrows, A ;
Livne, E ;
Dessart, L ;
Ott, CD ;
Murphy, J .
ASTROPHYSICAL JOURNAL, 2006, 640 (02) :878-890