Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Tomato Tolerance to Water Stress

被引:243
作者
Chitarra, Walter [1 ]
Pagliarani, Chiara [4 ]
Maserti, Biancaelena
Lumini, Erica [2 ]
Siciliano, Ilenia [5 ]
Cascone, Pasquale [3 ]
Schubert, Andrea [4 ]
Gambino, Giorgio [1 ]
Balestrini, Raffaella [2 ]
Guerrieri, Emilio [3 ]
机构
[1] CNR, Inst Sustainable Plant Protect, I-10135 Turin, Italy
[2] CNR, Inst Sustainable Plant Protect, I-10125 Turin, Italy
[3] CNR, Inst Sustainable Plant Protect, I-80055 Portici, Italy
[4] Univ Turin, Dept Agr Forest & Food Sci, I-10095 Grugliasco, TO, Italy
[5] Univ Turin, Dept Mol Biotechnol & Hlth Sci, I-10126 Turin, Italy
关键词
ROOT HYDRAULIC-PROPERTIES; ABSCISIC-ACID; DROUGHT STRESS; ABIOTIC STRESS; GENE-EXPRESSION; LIPOXYGENASE ACTIVITY; FRUIT-DEVELOPMENT; OXIDATIVE STRESS; AQUAPORIN GENES; JASMONIC ACID;
D O I
10.1104/pp.16.00307
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS. To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved.
引用
收藏
页码:1009 / 1023
页数:15
相关论文
共 104 条
[1]   Tolerance of Mycorrhiza infected Pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions [J].
Abbaspour, H. ;
Saeidi-Sar, S. ;
Afshari, H. ;
Abdel-Wahhab, M. A. .
JOURNAL OF PLANT PHYSIOLOGY, 2012, 169 (07) :704-709
[2]   Plant Responses to Drought Stress and Exogenous ABA Application are Modulated Differently by Mycorrhization in Tomato and an ABA-deficient Mutant (Sitiens) [J].
Aroca, Ricardo ;
Alguacil, Maria del Mar ;
Vernieri, Paolo ;
Ruiz-Lozano, Juan Manuel .
MICROBIAL ECOLOGY, 2008, 56 (04) :704-719
[3]   How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? [J].
Aroca, Ricardo ;
Porcel, Rosa ;
Ruiz-Lozano, Juan Manuel .
NEW PHYTOLOGIST, 2007, 173 (04) :808-816
[4]   Regulation of root water uptake under abiotic stress conditions [J].
Aroca, Ricardo ;
Porcel, Rosa ;
Manuel Ruiz-Lozano, Juan .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (01) :43-57
[5]   Expression Analysis of the First Arbuscular Mycorrhizal Fungi Aquaporin Described Reveals Concerted Gene Expression Between Salt-Stressed and Nonstressed Mycelium [J].
Aroca, Ricardo ;
Bago, Alberto ;
Sutka, Moira ;
Antonio Paz, Jose ;
Cano, Custodia ;
Amodeo, Gabriela ;
Manuel Ruiz-Lozano, Juan .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (09) :1169-1178
[6]   Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi [J].
Asrar, A. A. ;
Abdel-Fattah, G. M. ;
Elhindi, K. M. .
PHOTOSYNTHETICA, 2012, 50 (02) :305-316
[7]   Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis [J].
Augé, RM .
MYCORRHIZA, 2001, 11 (01) :3-42
[8]   Moisture retention properties of a mycorrhizal soil [J].
Augé, RM ;
Stodola, AJW ;
Tims, JE ;
Saxton, AM .
PLANT AND SOIL, 2001, 230 (01) :87-97
[9]   Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis [J].
Auge, Robert M. ;
Toler, Heather D. ;
Saxton, Arnold M. .
MYCORRHIZA, 2015, 25 (01) :13-24
[10]   New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize Plants Under Drought Stress and Possible Implications for Plant Performance [J].
Barzana, Gloria ;
Aroca, Ricardo ;
Bienert, Gerd Patrick ;
Chaumont, Francois ;
Manuel Ruiz-Lozano, Juan .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2014, 27 (04) :349-363