Analysis of structural equation models with censored or truncated data via EM algorithm

被引:9
|
作者
Tang, ML [1 ]
Lee, SY [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, NT, Hong Kong
关键词
structural equation models; non-ignorable missing mechanism; generalized censoring mechanism (GCM); maximum-likelihood estimation; generalized EM algorithm; censored data; truncated data;
D O I
10.1016/S0167-9473(97)80040-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we delineate the analysis of structural equation models with censored data or truncated data with the number of unmeasured subjects under the framework of the generalized censoring mechanism (GCM), one of the most popular non-ignorable missing mechanisms. An EM algorithm for maximum-likelihood estimation in structural equation models with censored data will be presented. By reformulating the censored-data problem into non-ignorable missing-data problem, the maximization procedure is shown to be simplified. A simulated data set will be used as an illustrative example. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:33 / 46
页数:14
相关论文
共 50 条
  • [31] Bayesian Analysis of Skew Gaussian Spatial Models Based on Censored Data
    Tadayon, Vahid
    Khaledi, Majid Jafari
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (09) : 2431 - 2441
  • [32] blavaan: Bayesian Structural Equation Models via Parameter Expansion
    Merkle, Edgar C.
    Rosseel, Yves
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 85 (04): : 1 - 30
  • [33] Accurate Estimation of Structural Equation Models with Remote Partitioned Data
    Snoke, Joshua
    Brick, Timothy
    Slavkovic, Aleksandra
    PRIVACY IN STATISTICAL DATABASES: UNESCO CHAIR IN DATA PRIVACY, 2016, 9867 : 190 - 209
  • [34] Transformation Structural Equation Models With Highly Nonnormal and Incomplete Data
    Liu, Pengfei
    Chen, Ji
    Lu, Zhaohua
    Song, Xinyuan
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2015, 22 (03) : 401 - 415
  • [35] Hierarchical Bayesian models for robust estimation and censored data analysis in animal breeding
    Cardoso, Fernando Flores
    de Magalhaes Rosa, Guilherme Jordao
    Tempelman, Robert John
    de Almeida Torres Junior, Roberto Augusto
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2009, 38 : 72 - 80
  • [36] EFFECT ANALYSIS AND CAUSATION IN LINEAR STRUCTURAL EQUATION MODELS
    SOBEL, ME
    PSYCHOMETRIKA, 1990, 55 (03) : 495 - 515
  • [37] Network Topology Inference via Elastic Net Structural Equation Models
    Traganitis, Panagiotis A.
    Shen, Yanning
    Giannakis, Georgios B.
    2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 146 - 150
  • [38] Theory and method for constrained estimation in structural equation models with incomplete data
    Tang, ML
    Bentler, PM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 27 (03) : 257 - 270
  • [39] Identifying Aberrant Data in Structural Equation Models With IRLS-ADF
    Kim, Dale S.
    Reise, Steven P.
    Bentler, Peter M.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2018, 25 (03) : 343 - 358
  • [40] Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes
    Wang, Liang
    Tripathi, Yogesh Mani
    Dey, Sanku
    Zhang, Chunfang
    Wu, Ke
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 194 : 285 - 307