SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells

被引:4
作者
Blackburn, Darren M. [1 ,2 ]
Lazure, Felicia [1 ,2 ]
Soleimani, Vahab D. [1 ,2 ]
机构
[1] McGill Univ, Dept Human Genet, Montreal, PQ, Canada
[2] Jewish Gen Hosp, Lady Davis Inst Med Res, 3755 Ch Cote Ste Catherine, Montreal, PQ H3T 1E2, Canada
关键词
Single cell technologies; SMART-Seq; ATAC-Seq; gene expression; chromatin; muscle stem cells; niche environment; skeletal muscle; SATELLITE CELLS; SELF-RENEWAL; CHROMATIN ACCESSIBILITY; NEXT-GENERATION; FIBROBLASTS; SEQ; HETEROGENEITY; CONSTRUCTION; PROGENITORS; CAPACITY;
D O I
10.1080/10409238.2021.1908950
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.
引用
收藏
页码:284 / 300
页数:17
相关论文
共 142 条
[1]   Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition [J].
Adey, Andrew ;
Morrison, Hilary G. ;
Asan ;
Xun, Xu ;
Kitzman, Jacob O. ;
Turner, Emily H. ;
Stackhouse, Bethany ;
MacKenzie, Alexandra P. ;
Caruccio, Nicholas C. ;
Zhang, Xiuqing ;
Shendure, Jay .
GENOME BIOLOGY, 2010, 11 (12)
[2]   A 96-well culture platform enables longitudinal analyses of engineered human skeletal muscle microtissue strength [J].
Afshar, Mohammad E. ;
Abraha, Haben Y. ;
Bakooshli, Mohsen A. ;
Davoudi, Sadegh ;
Thavandiran, Nimalan ;
Tung, Kayee ;
Ahn, Henry ;
Ginsberg, Howard J. ;
Zandstra, Peter W. ;
Gilbert, Penney M. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction [J].
Alexakis, Catherine ;
Partridge, Terence ;
Bou-Gharios, George .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2007, 293 (02) :C661-C669
[4]   Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis [J].
Arnold, Ludovic ;
Henry, Adeline ;
Poron, Francoise ;
Baba-Amer, Yasmine ;
van Rooijen, Nico ;
Plonquet, Anne ;
Gherardi, Romain K. ;
Chazaud, Benedicte .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (05) :1057-1069
[5]   Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche [J].
Baghdadi, Meryem B. ;
Castel, David ;
Machado, Leo ;
Fukada, So-ichiro ;
Birk, David E. ;
Relaix, Frederic ;
Tajbakhsh, Shahragim ;
Mourikis, Philippos .
NATURE, 2018, 557 (7707) :714-+
[6]   Functionally heterogeneous human satellite cells identified by single cell RNA sequencing [J].
Barruet, Emilie ;
Garcia, Steven M. ;
Striedinger, Katharine ;
Wu, Jake ;
Lee, Solomon ;
Byrnes, Lauren ;
Wong, Alvin ;
Sun Xuefeng ;
Tamaki, Stanley ;
Brack, Andrew S. ;
Pomerantz, Jason H. .
ELIFE, 2020, 9
[7]   Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells [J].
Beauchamp, JR ;
Heslop, L ;
Yu, DSW ;
Tajbakhsh, S ;
Kelly, RG ;
Wernig, A ;
Buckingham, ME ;
Partridge, TA ;
Zammit, PS .
JOURNAL OF CELL BIOLOGY, 2000, 151 (06) :1221-1233
[8]   Fibronectin Regulates Wnt7a Signaling and Satellite Cell Expansion [J].
Bentzinger, C. Florian ;
Wang, Yu Xin ;
von Maltzahn, Julia ;
Soleimani, Vahab D. ;
Yin, Hang ;
Rudnicki, Michael A. ;
Rudnicki, A. .
CELL STEM CELL, 2013, 12 (01) :75-87
[9]   Building Muscle: Molecular Regulation of Myogenesis [J].
Bentzinger, C. Florian ;
Wang, Yu Xin ;
Rudnicki, Michael A. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (02)
[10]   Notch Signaling Is Necessary to Maintain Quiescence in Adult Muscle Stem Cells [J].
Bjornson, Christopher R. R. ;
Cheung, Tom H. ;
Liu, Ling ;
Tripathi, Pinky V. ;
Steeper, Katherine M. ;
Rando, Thomas A. .
STEM CELLS, 2012, 30 (02) :232-242