A nonlocal maximum likelihood estimation method for enhancing magnetic resonance phase maps

被引:4
作者
Sudeep, P. V. [1 ,2 ]
Palanisamy, P. [1 ]
Kesavadas, Chandrasekharan [3 ]
Sijbers, Jan [4 ]
den Dekker, Arnold J. [4 ,5 ]
Rajan, Jeny [6 ]
机构
[1] Natl Inst Technol Tiruchirappalli, Dept Elect & Commun Engn, Tiruchirappalli, Tamil Nadu, India
[2] Natl Inst Technol Karnataka, Dept Elect & Commun Engn, Surathkal, India
[3] Sree Chitra Tirunal Inst Med Sci & Technol, Dept Imaging Sci & Intervent Radiol, Trivandrum, Kerala, India
[4] Univ Antwerp, Dept Phys, iMinds Vis Lab, Antwerp, Belgium
[5] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[6] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Surathkal, India
关键词
Denoising; Magnetic resonance image; Maximum likelihood estimation; Noise; Phase map; RICIAN NOISE-REDUCTION; MAGNITUDE MRI; IMAGES; FILTER;
D O I
10.1007/s11760-016-1039-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A phase map can be obtained from the real and imaginary components of a complex valued magnetic resonance (MR) image. Many applications, such as MR phase velocity mapping and susceptibility mapping, make use of the information contained in the MR phase maps. Unfortunately, noise in the complex MR signal affects the measurement of parameters related to phase (e.g, the phase velocity). In this paper, we propose a nonlocal maximum likelihood (NLML) estimation method for enhancing phase maps. The proposed method estimates the true underlying phase map from a noisy MR phase map. Experiments on both simulated and real data sets indicate that the proposed NLML method has a better performance in terms of qualitative and quantitative evaluations when compared to state-of-the-art methods.
引用
收藏
页码:913 / 920
页数:8
相关论文
共 24 条
[1]   Noise and signal estimation in magnitude MRI and Rician distributed images:: A LMMSE approach [J].
Aja-Fernandez, Santiago ;
Alberola-Lopez, Carlos ;
Westin, Carl-Fredrik .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (08) :1383-1398
[2]  
Bioucas-Dias J., 2002, APPL OPTICS, V47, P5358
[3]   Optimal measurement of magnitude and phase from MR data [J].
Bonny, JM ;
Renou, JP ;
Zanca, M .
JOURNAL OF MAGNETIC RESONANCE SERIES B, 1996, 113 (02) :136-144
[4]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[5]   Understanding phase maps in MRI: A new cutline phase unwrapping method [J].
Chavez, S ;
Xiang, QS ;
An, L .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (08) :966-977
[6]  
Cruz-Enríquez H, 2009, LECT NOTES COMPUT SC, V5627, P83, DOI 10.1007/978-3-642-02611-9_9
[7]   Data distributions in magnetic resonance images: A review [J].
den Dekker, A. J. ;
Sijbers, J. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2014, 30 (07) :725-741
[8]  
Fisher Y., 1995, PIXELIZED DATA
[9]   A Nonlocal Maximum Likelihood Estimation Method for Rician Noise Reduction in MR Images [J].
He, Lili ;
Greenshields, Ian R. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (02) :165-172
[10]   A new adaptive coupled diffusion PDE for MRI Rician noise [J].
Heydari, Mostafa ;
Karami, Mohammad-Reza ;
Babakhani, Azizollah .
SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (07) :1211-1218