Radial basis function network-based adaptive tracking control for robot manipulators

被引:0
|
作者
Wang, HR [1 ]
Zhu, QG [1 ]
Chen, Y [1 ]
机构
[1] Hebei Univ, Inst Elect & Commun Engn, Baoding 071002, Peoples R China
来源
PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2004年
关键词
robot manipulators; RBF network; adaptive control; sliding model control;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Radial Basis Function (RBF) network-based adaptive tracking control scheme is proposed for robot manipulators. A RBF network is used to generate control input signals that are similar to the control inputs of adaptive control using liner reparameterization of the robot manipulator. A sliding model control term is used to eliminate the effects of the network inherent approximation errors and external disturbance. The asymptotic stability of the control system is established using Lyapunov theorem. Simulations are given for a two-link robot in the end of the paper, and validate the control arithmetic.
引用
收藏
页码:510 / 514
页数:5
相关论文
共 50 条
  • [1] Neural network-based tracking control of robot manipulators
    Niu, Y.
    Yang, C.
    Binggong Xuebao/Acta Armamentarii, 2001, 22 (02): : 256 - 259
  • [2] An adaptive control method for robot manipulators using radial basis function networks
    Lee, MJ
    Choi, YK
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 1827 - 1832
  • [3] Adaptive Sliding Mode Neural Network-Based Composite Control of Robot Manipulators for Trajectory Tracking
    Wang, Xingbo
    Qian, Jidong
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 434 - 439
  • [4] Neural network-based sliding mode adaptive control for robot manipulators
    Sun, Tairen
    Pei, Hailong
    Pan, Yongping
    Zhou, Hongbo
    Zhang, Caihong
    NEUROCOMPUTING, 2011, 74 (14-15) : 2377 - 2384
  • [5] Radial basis function neural network-based adaptive critic control of induction motors
    Lin, Chuan-Kai
    APPLIED SOFT COMPUTING, 2011, 11 (03) : 3066 - 3074
  • [6] Radial Basis Function Neural Network-based Adaptive Control of Uncertain Nonlinear Systems
    Ait Abbas, Hamou
    Zegnini, Boubakeur
    Belkheiri, Mohammed
    Rabhi, Abdelhamid
    3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015), 2015,
  • [7] Radial Basis Function Neural Network-based Control Method for a Upper Limb Rehabilitation Robot
    Guo, Shuxiang
    Gao, Wenyang
    Bu, Dongdong
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 1327 - 1332
  • [8] Generalized dynamic fuzzy neural network-based tracking control of robot manipulators
    Wen, SH
    Zhu, QG
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 812 - 816
  • [9] Neural network-based nonlinear tracking control of kinematically redundant robot manipulators
    Kumar, Naveen
    Panwar, Vikas
    Sukavanam, N.
    Sharma, S. P.
    Borm, J. H.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1889 - 1901
  • [10] Generalized dynamic fuzzy neural network-based tracking control of robot manipulators
    Zhu, Qiguang
    Wang, Hongrui
    Xiao, Jinzhuang
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 749 - +