Extending the language of DNA molecular recognition by polyamides: Unexpected influence of imidazole and pyrrole arrangment on binding affinity and specificity

被引:59
作者
Buchmueller, KL
Staples, AM
Howard, CM
Horick, SM
Uthe, PB
Le, NM
Cox, KK
Nguyen, B
Pacheco, KAO
Wilson, WD [1 ]
Lee, M
机构
[1] Furman Univ, Dept Chem, Greenville, SC 29613 USA
[2] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA
[3] Univ No Colorado, Dept Chem & Biochem, Greeley, CO 80639 USA
关键词
D O I
10.1021/ja044359p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pyrrole (Py) and imiclazole (Im) polyamides can be designed to target specific DNA sequences. The effect that the pyrrole and imidazole arrangement, plus DNA sequence, have on sequence specificity and binding affinity has been investigated using DNA melting (DeltaT(M)), circular dichroism (CD), and surface plasmon resonance (SPR) studies. SPR results obtained from a complete set of triheterocyclic polyamides show a dramatic difference in the affinity of f-ImPyIm for its cognate DNA (K-eq = 1.9 x 10(8) M-1) and f-PyPylm for its cognate DNA (K-eq = 5.9 x 10(5) M-1), which could not have been anticipated prior to characterization of these compounds. Moreover, f-ImPyIm has a 10-fold greater affinity for CGCG than distamycin A has for its cognate, AATT. To understand this difference, the triamide dimers are divided into two structural groupings: central and terminal pairings. The four possible central pairings show decreasing selectivity and affinity for their respective cognate sequences: -ImPy > -PyPy- much greater than -PyIm- approximate to -ImIm-. These results extend the language of current design motifs for polyamide sequence recognition to include the use of "words" for recognizing two adjacent base pairs, rather than "letters" for binding to single base pairs. Thus, polyamides designed to target Watson-Crick base pairs should utilize the strength of -ImPy- and -PyPy- central pairings. The f/Im and f/Py terminal groups yielded no advantage for their respective C/G or T/A base pairs. The exception is with the -ImPy- central pairing, for which f/Im has a 10-fold greater affinity for C/G than f/Py has for T/A.
引用
收藏
页码:742 / 750
页数:9
相关论文
共 42 条