Counting lattice points in free sums of polytopes

被引:3
|
作者
Stapledon, Alan
机构
关键词
Polytopes; Ehrhart theory; Free sums; Weighted Ehrhart polynomial;
D O I
10.1016/j.jcta.2017.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to compute the Ehrhart polynomial of the free sum of two lattice polytopes containing the origin P and Q in terms of the enumerative combinatorics of P and Q. This generalizes work of Beck, Jayawant, McAllister, and Braun, and follows from the observation that the weighted h*-polynomial is multiplicative with respect to the free sum. We deduce that given a lattice polytope P containing the origin, the problem of computing the number of lattice points in all rational dilates of P is equivalent to the problem of computing the number of lattice points in all integer dilates of all free sums of P with itself. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [31] Counting lattice points in the sphere
    Tsang, KM
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 679 - 688
  • [32] Counting lattice points on spheres
    Ewell, JA
    MATHEMATICAL INTELLIGENCER, 2000, 22 (04): : 51 - 53
  • [33] Enumeration of Lattice 3-Polytopes by Their Number of Lattice Points
    Blanco, Monica
    Santos, Francisco
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (03) : 756 - 800
  • [34] EXTREME POINTS OF CERTAIN TRANSPORTATION POLYTOPES WITH FIXED TOTAL SUMS
    Chen, Zhi
    Zhu, Zelin
    Li, Jiawei
    Yang, Lizhen
    Cao, Lei
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 : 256 - 271
  • [35] Fractional part sums and lattice points
    Nowak, WG
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1998, 41 : 497 - 515
  • [36] Exponential sums and lattice points III
    Huxley, MN
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 : 591 - 609
  • [37] Effective lattice point counting in rational convex polytopes
    De Loera, JA
    Hemmecke, R
    Tauzer, J
    Yoshida, R
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 38 (04) : 1273 - 1302
  • [38] EXPONENTIAL-SUMS AND LATTICE POINTS
    HUXLEY, MN
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1990, 60 : 471 - 502
  • [39] On Lattice-Free Orbit Polytopes
    Katrin Herr
    Thomas Rehn
    Achill Schürmann
    Discrete & Computational Geometry, 2015, 53 : 144 - 172
  • [40] On Lattice-Free Orbit Polytopes
    Herr, Katrin
    Rehn, Thomas
    Schuermann, Achill
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (01) : 144 - 172