Counting lattice points in free sums of polytopes

被引:3
|
作者
Stapledon, Alan
机构
关键词
Polytopes; Ehrhart theory; Free sums; Weighted Ehrhart polynomial;
D O I
10.1016/j.jcta.2017.04.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to compute the Ehrhart polynomial of the free sum of two lattice polytopes containing the origin P and Q in terms of the enumerative combinatorics of P and Q. This generalizes work of Beck, Jayawant, McAllister, and Braun, and follows from the observation that the weighted h*-polynomial is multiplicative with respect to the free sum. We deduce that given a lattice polytope P containing the origin, the problem of computing the number of lattice points in all rational dilates of P is equivalent to the problem of computing the number of lattice points in all integer dilates of all free sums of P with itself. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [21] On the number of lattice free polytopes
    Bárány, I
    Kantor, JM
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (01) : 103 - 110
  • [22] LATTICE POINTS IN THE NEWTON POLYTOPES OF KEY POLYNOMIALS
    Fan, Neil J. Y.
    Guo, Peter L.
    Peng, Simon C. Y.
    Sun, Sophie C. C.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (02) : 1281 - 1289
  • [23] Enumeration of Lattice 3-Polytopes by Their Number of Lattice Points
    Mónica Blanco
    Francisco Santos
    Discrete & Computational Geometry, 2018, 60 : 756 - 800
  • [24] Notes on lattice points of zonotopes and lattice-face polytopes
    Bey, Christian
    Henk, Martin
    Henze, Matthias
    Linke, Eva
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 634 - 644
  • [26] Counting the Integer Points of Parametric Polytopes: A Maple Implementation
    Jing, Rui-Juan
    Lei, Yuzhuo
    Maligec, Christopher F. S.
    Maza, Marc Moreno
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2024, 2024, 14938 : 140 - 160
  • [27] Counting Integer Points in Higher-Dimensional Polytopes
    Barvinok, Alexander
    CONVEXITY AND CONCENTRATION, 2017, 161 : 585 - 612
  • [28] COUNTING LATTICE POINTS IN PYRAMIDS
    SOLE, P
    DISCRETE MATHEMATICS, 1995, 139 (1-3) : 381 - 392
  • [29] ON COUNTING LATTICE POINTS IN POLYHEDRA
    DYER, M
    SIAM JOURNAL ON COMPUTING, 1991, 20 (04) : 695 - 707
  • [30] Counting lattice points on spheres
    John A. Ewell
    The Mathematical Intelligencer, 2000, 22 : 51 - 53