Chaos Particle Swarm Optimization Algorithm for Optimization Problems

被引:10
作者
Liu, Wenbin [1 ,2 ]
Luo, Nengsheng [1 ]
Pan, Guo [3 ,4 ]
Ouyang, Aijia [4 ,5 ]
机构
[1] Hunan Univ, Sch Econ & Trade, Changsha 410082, Hunan, Peoples R China
[2] China Great Wall Technol Grp Co Ltd, Changsha 410100, Hunan, Peoples R China
[3] Hunan Vocat Coll Modern Logist, Dept Logist Informat, Changsha 410131, Hunan, Peoples R China
[4] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[5] Zunyi Normal Univ, Sch Informat Engn, Zunyi 563006, Guizhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos operator; hybrid algorithm; parameter inversion; particle swarm optimization; global optimization; PARAMETER-ESTIMATION; SEARCH ALGORITHM; HARMONY SEARCH; GPU; SQUARES;
D O I
10.1142/S021800141859019X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A chaos particle swarm optimization (CPSO) algorithm based on the chaos operator (CS) is proposed for global optimization problems and parameter inversion of the nonlinear sun shadow model in our study. The CPSO algorithm combines the local search ability of CS and the global search ability of PSO algorithm. The CPSO algorithm can not only solve the global optimization problems effectively, but also address the parameter inversion problems of the date of sun shadow model location successfully. The results of numerical experiment and simulation experiment show that the CPSO algorithm has higher accuracy and faster convergence than the-state-of-the-art techniques. It can effectively improve the computing accuracy and computing efficiency of the global optimization problems, and also provide a novel method to solve the problems of integer parameter inversion in real life.
引用
收藏
页数:18
相关论文
共 30 条
  • [1] [Anonymous], INT J PARALLEL PROGR
  • [2] Chellapilla K., 1998, IEEE Transactions on Evolutionary Computation, V2, P91, DOI 10.1109/4235.735431
  • [3] GFlink: An In-Memory Computing Architecture on Heterogeneous CPU-GPU Clusters for Big Data
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Zeng, Zeng
    Li, Keqin
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2018, 29 (06) : 1275 - 1288
  • [4] GPU-Accelerated Parallel Hierarchical Extreme Learning Machine on Flink for Big Data
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Tang, Zhuo
    Li, Keqin
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (10): : 2740 - 2753
  • [5] A parallel approximate SS-ELM algorithm based on MapReduce for large-scale datasets
    Chen, Cen
    Li, Kenli
    Ouyang, Aijia
    Li, Keqin
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2017, 108 : 85 - 94
  • [6] Hybrid Ant Colony-Genetic Algorithm (GAAPI) for Global Continuous Optimization
    Ciornei, Irina
    Kyriakides, Elias
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (01): : 234 - 245
  • [7] Hybrid Invasive Weed Optimization Algorithm for Parameter Inversion Problems
    Deng, Tan
    Du, Jiayi
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (09)
  • [8] A new heuristic optimization algorithm: Harmony search
    Geem, ZW
    Kim, JH
    Loganathan, GV
    [J]. SIMULATION, 2001, 76 (02) : 60 - 68
  • [9] The Levenberg-Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography
    Kleefeld, A.
    Reissel, M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (09) : 4490 - 4501
  • [10] Modelling topographic variation in solar radiation in a GIS environment
    Kumar, L
    Skidmore, AK
    Knowles, E
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 1997, 11 (05) : 475 - 497