Bose-Einstein condensates in optical lattices: Band-gap structure and solitons

被引:246
作者
Louis, PJY [1 ]
Ostrovskaya, EA
Savage, CM
Kivshar, YS
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Nonlinear Phys Grp, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Dept Phys & Theoret Phys, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 01期
关键词
D O I
10.1103/PhysRevA.67.013602
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We analyze the existence and stability of spatially extended (Bloch-type) and localized states of a Bose-Einstein condensate loaded into an optical lattice. In the framework of the Gross-Pitaevskii equation with a periodic potential, we study the band-gap structure of the matter-wave spectrum in both the linear and nonlinear regimes. We demonstrate the existence of families of spatially localized matter-wave gap solitons, and analyze their stability in different band gaps, for both repulsive and attractive atomic interactions.
引用
收藏
页数:9
相关论文
共 38 条
  • [1] Nonlinear excitations in arrays of Bose-Einstein condensates
    Abdullaev, FK
    Baizakov, BB
    Darmanyan, SA
    Konotop, VV
    Salerno, M
    [J]. PHYSICAL REVIEW A, 2001, 64 (04) : 436061 - 4360610
  • [2] Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential
    Alfimov, GL
    Kevrekidis, PG
    Konotop, VV
    Salerno, M
    [J]. PHYSICAL REVIEW E, 2002, 66 (04): : 6
  • [3] Matter solitons in Bose-Einstein condensates with optical lattices
    Alfimov, GL
    Konotop, VV
    Salerno, M
    [J]. EUROPHYSICS LETTERS, 2002, 58 (01): : 7 - 13
  • [4] Macroscopic quantum interference from atomic tunnel arrays
    Anderson, BP
    Kasevich, MA
    [J]. SCIENCE, 1998, 282 (5394) : 1686 - 1689
  • [5] [Anonymous], 1964, Handbook of mathematical functions
  • [6] [Anonymous], 1977, NONLINEAR ORDINARY D
  • [7] Oscillatory instabilities of gap solitons: a numerical study
    Barashenkov, IV
    Zemlyanaya, EV
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2000, 126 (1-2) : 22 - 27
  • [8] All-optical formation of an atomic Bose-Einstein condensate
    Barrett, MD
    Sauer, JA
    Chapman, MS
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (01)
  • [9] Bose-Einstein condensates in spatially periodic potentials
    Berg-Sorensen, K
    Molmer, K
    [J]. PHYSICAL REVIEW A, 1998, 58 (02): : 1480 - 1484
  • [10] Bose-Einstein condensates in standing waves: The cubic nonlinear Schrodinger equation with a periodic potential
    Bronski, JC
    Carr, LD
    Deconinck, B
    Kutz, JN
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (08) : 1402 - 1405