ON HIGHER CONGRUENCES BETWEEN AUTOMORPHIC FORMS

被引:6
作者
Berger, Tobias [1 ]
Klosin, Krzysztof [2 ]
Kramer, Kenneth [2 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
[2] CUNY, Queens Coll, Dept Math, Flushing, NY 11367 USA
关键词
congruences; automorphic forms; REPRESENTATIONS; CONJECTURE; LIFTS;
D O I
10.4310/MRL.2014.v21.n1.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a commutative algebra result which has consequences for congruences between automorphic forms modulo prime powers. If C denotes the congruence module for a fixed automorphic Hecke eigenform pi(0), we prove an exact relation between the p-adic valuation of the order of C and the sum of the exponents of p-power congruences between the Hecke eigenvalues of pi(0) and other automorphic forms. We apply this result to several situations including the congruences described by Mazur's Eisenstein ideal.
引用
收藏
页码:71 / 82
页数:12
相关论文
共 19 条
[1]   Yoshida lifts and the Bloch-Kato conjecture for the convolution L-function [J].
Agarwal, Mahesh ;
Klosin, Krzysztof .
JOURNAL OF NUMBER THEORY, 2013, 133 (08) :2496-2537
[2]  
[Anonymous], 1995, COMMUTATIVE ALGEBRA, DOI DOI 10.1007/978-1-4612-5350-1
[3]  
[Anonymous], 1978, I HAUTES ETUDES SCI
[4]  
Berger T., 2013, PREPRINT
[5]   Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture [J].
Brown, Jim .
COMPOSITIO MATHEMATICA, 2007, 143 (02) :290-322
[6]   On the Cuspidality of Pullbacks of Siegel Eisenstein Series and Applications to the Bloch-Kato Conjecture [J].
Brown, Jim .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (07) :1706-1756
[7]   On the ramification of Hecke algebras at Eisenstein primes [J].
Calegari, F ;
Emerton, M .
INVENTIONES MATHEMATICAE, 2005, 160 (01) :97-144
[8]  
Darmon H., 1997, ELLIPTIC CURVES MODU, P2
[9]  
Deligne P., 2000, CURRENTS TRENDS NUMB, P39
[10]  
DIAMOND F, 1989, COMPOS MATH, V71, P49