Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function

被引:5
|
作者
Nonlaopon, Kamsing [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Shah, Farooq Ahmed [2 ]
Jung, Chahn Yong [3 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[3] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
integral operators; fractional integral operators; bounds; (alpha; m)-convex function; symmetry;
D O I
10.3390/sym14050922
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to obtain the bounds of a class of integral operators containing Mittag-Leffler functions in their kernels. A recently defined unified Mittag-Leffler function plays a vital role in connecting the results of this paper with the well-known bounds of fractional integral operators published in the recent past. The symmetry of a function about a line is a fascinating property that plays an important role in mathematical inequalities. A variant of the Hermite-Hadamard inequality is established using the closely symmetric property for (alpha, m)-convex functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION APPLIED ON FRACTIONAL INTEGRAL INEQUALITIES
    Andric, Maja
    Farid, Ghulam
    Pecaric, Josip
    Siddique, Muhammad Usama
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1171 - 1184
  • [22] Boundedness of Fractional Integral Operators Containing Mittag-Leffler Function via Exponentially s-Convex Functions
    Hong, Gang
    Farid, G.
    Nazeer, Waqas
    Akbar, S. B.
    Pecaric, J.
    Zou, Junzhong
    Geng, Shengtao
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [23] Fractional Calculus of a Unified Mittag-Leffler Function
    J. C. Prajapati
    B. V. Nathwani
    Ukrainian Mathematical Journal, 2015, 66 : 1267 - 1280
  • [24] Study of Fractional Integral Operators Containing Mittag-Leffler Functions via Strongly (α, m)-Convex Functions
    Dong, Yanliang
    Saddiqa, Maryam
    Ullah, Saleem
    Farid, Ghulam
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [25] Some new Chebyshev type inequalities for fractional integral operator containing a further extension of Mittag-Leffler function in the kernel
    Set, Erhan
    Choi, Junesang
    Demirbas, Sevdenur
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [26] Some new Chebyshev type inequalities for fractional integral operator containing a further extension of Mittag-Leffler function in the kernel
    Erhan Set
    Junesang Choi
    Sevdenur Demİrbaş
    Afrika Matematika, 2022, 33
  • [27] Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel
    Sun, Wenbing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (06) : 4985 - 4998
  • [28] Fractional Ostrowski Type Inequalities via Generalized Mittag-Leffler Function
    You, Xinghua
    Farid, Ghulam
    Maheen, Kahkashan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [29] Fractional Integral Inequalities of Hermite-Hadamard Type for (h,g;m)-Convex Functions with Extended Mittag-Leffler Function
    Andric, Maja
    FRACTAL AND FRACTIONAL, 2022, 6 (06)
  • [30] A FRACTIONAL INTEGRAL OPERATOR INVOLVING THE MITTAG-LEFFLER TYPE FUNCTION WITH FOUR PARAMETERS
    Agarwal, Praveen
    Milovanovic, Gradimir V.
    Nisar, K. S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05): : 597 - 605